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1. INTRODUCTION 

Dynamic failure of ductile materials is involved in a wide range of applications including the 
optimization of fast manufacturing processes and the security of structures exposed to impact, 
explosive loading or crash events. At high loading rates, tiny fluctuations in the plastic flow field 
induce important acceleration of material particles. Thus, significant inertia effects are taking place 
at the macroscopic level and sometimes also at the level of microscopic deformation mechanisms. 
Naturally, when subjected to dynamic loading the behavior of metallic materials is quite distinct 
from that observed under quasi-static conditions. The flow stress has higher rate dependence. The 
load bearing capacity is altered by thermal softening due to adiabatic heating resulting from plastic 
work. At last, inertia effects and material properties interact in a complex way that confers a 
dynamic signature to the patterning of plastic flow localization and to the process of internal 
damage.  

Strain localization, which is often the precursor of failure of ductile materials, is the result of plastic 
flow instability, an outcome of geometrical or material softening. The patterning of strain 
localization is observed to be quite sensitive to the loading rate. A single neck is usually seen in a bar 
under quasi-static tensile loading while multiple necking is triggered at high stretching rates. 
Multiple necking is a true manifestation of inertia effects.  

Fracture of ductile materials is often due to the nucleation, growth and coalescence of microscopic 
voids. Under dynamic loading conditions, these mechanisms can be substantially affected by inertia. 
The distinctive features of dynamic ductile damage are discussed in another presentation of this 
workshop (Jacques et al). A multiscale modelling of voided visco-plastic solids, incorporating 
micro-inertia effects, has been developped. The results suggest that considering microscale inertia is 
of primary importance in the modelling of spall fracture and dynamic ductile crack growth.  

A comprehensive overview of the whole field of dynamic ductile failure is not attempted here. 
Selected topics of dynamic and quasistatic failure are presented here which comprise the analysis of: 
(i) dynamic necking and fragmentation, (ii) shear flow instabilities and adiabatic shear banding. 

 

2. DYNAMIC NECKING 

Experiments on metal rings and shells subject to intense stretching rates of the order of 104 s-1 reveal 
that the fragmentation process of ductile materials is frequently initiated by multiple necking as 
illustrated in Fig.1, [1-5]. The following observations can be made: 

• the number of necks and of fragments increases with the loading rate (Fig.1a) 

• some necks are arrested before fracture (Fig.4b) 

• the overall fracture strain is increasing with the loading rate (increased global ductility) 

These features are intimately related to inertia effects. 
 
 



2.1 Perturbation analysis 

The early stages of multiple necking can be well captured by a linear stability approach. Perturbation 
methods were developed by Fressengeas and Molinari [6] and Mercier and Molinari [7-8] for the 
analysis of dynamic necking of viscoplastic materials. The quasistatic problem was examined by 
Hutchinson and Neale [9] and Hutchinson et al [10]. Dynamic necking of rate independent plastic 
materials was studied by Shenoy and Freund [11] and Guduru and Freund [12] by extending the 
quasistatic bifurcation analysis of Hill and Hutchinson [13]. Simplified one dimensional perturbation 
analyses with the Bridgman correction to account for multiaxial effects in necked regions have been 
also used, [14-17]. 

The effects of inertia are investigated here by following the development proposed by Mercier et al 
[2]. Results were obtained for a uniform plate subject to dynamic plane strain stretching and for 
incompressible visco-plastic materials obeying the J2-flow theory and with flow stress of the 
form: ),,( Tg eeY εεσ &=     with  
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t

ee )()(
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eε&  is the effective plastic strain rate, 
ijd  is the plastic strain rate tensor, εe(t) is the cumulated plastic 

strain at time t and T is the temperature. Strain hardening, strain rate hardening and thermal 
sensitivity are accounted for in the constitutive relation (2.1). Elastic deformations are neglected. 

The plate occupies the domain defined by 
111 LXL ≤≤−  and 

222 LXL ≤≤−  in the initial reference 
configuration and is stretched in the direction 

1X with the constant velocity V± applied at the 
extremities

11 LX ±= , see Fig.2. We denote by 
1l the half current length, 

11 / Ll=λ the longitudinal 
stretch. 
 

 
 
Fig. 1. (a)  Necking and fragmentation of  thin rings of solutionized 6061 Aluminum subject to rapid 
radial expansion by the effect of an intense magnetic field, Altynova et al [1]. The number of necks 

and the number of fragments increase with the energy input (i.e. with the stretching rate):  
1) original, 2) 0.94 kJ, 3) 1.38 kJ, 4) 2.06 kJ, 5) 2.38 kJ, 6) quasistatic tensile test (single neck); (b) 

multiple necking of a tantalum hemisphere under rapid expansion (strain rates of the order of 10000 
s-1) by the effect of a shock loading generated by an explosive charge, Mercier et al [2].  

 

The theoretical background solution that exists in absence of any flow instability can be calculated 
analytically [6] and involves lateral inertial effects. We denote by 0

eσ , 0
eε , 0

eε& and 0T respectively the 

flow stress (
ijije ss)2/3(=σ is the effective stress and 

ijs the deviatoric stress), the cumulated plastic 

strain, the equivalent strain rate and the temperature of the background solution. These quantities are 
uniform. The evolution of 0T results from adiabatic heating associated to plastic work. 
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Fig. 2. Plate under plane strain deformation subject to the constant stretch-rate  

1/ LV=λ&  
 

Plastic flow stability is analysed at any time *t by perturbing the background solution with a small 
displacement field ),,( 211 tXXxδ , ),,( 212 tXXxδ superimposed to the current position of material particles. 
(X1, X2) and (x1, x2) are respectively the Lagrangian and the Eulerian coordinates. The problem 
equations are linearized with respect to the corresponding disturbances of velocity, acceleration, 
strain-rates, cumulated plastic strain and stresses. To satisfy incompressibility of plastic flow a 
stream function, φ , is introduced such that 

2,1 λφδ −=x , 
1,

1
2 φλδ −=x , where i,(.)  is the partial derivative 

with respect to Xi.  
The analysis investigates the exponential growth rate of modes of the form: 

)exp()sin())(exp(),,( 21*21 XikXttAtXX ξηφ −=      (2.2) 
where η  characterizes the time evolution, k and ξ  are Lagrangian longitudinal and transversal 
wavenumbers. The boundary conditions at extremities are satisfied if 0)sin( 1 =kX  at 

11 LX ±= , i.e.: 

πjkL =1
  ,  (j  positive integer)      (2.3) 

The relationship between the growth rate η and the wave number k is obtained by using the lateral 
boundary conditions and can be written in terms of dimensionless parameters as:  
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m, n and q represent respectively strain rate sensitivity, strain hardening and thermal softening 
parameters. Inertia effects are embedded in the expression of the normalized inertial pressure

Ip . 
This linearized perturbation approach was recently used to analyze multiple necking in the dynamic 
expansion experiments of hemispherical metallic shells, Fig.1b, Mercier et al [2].  
 

2.2 Stabilizing effect of inertia. 
 

Effects of inertia on the strain localization process can be illustrated by considering a rate dependent 
non-hardening material. The flow stress is taken as a power-law of the equivalent plastic strain rate: 

   m
ReRe )/( εεσσ &&=       (2.6) 

The relationship (2.4) simplifies into ),,( 2 mkkpI
−= ηη . Fig.3 shows results of the perturbation analysis 

for a plate of infinite length under plane strain stretching. The dependence of the normalized growth 
rate η  is displayed in Fig.3a with respect to the normalized wave number k  for   1=λ (initial state) 
and the stretch-rate 1410 −= sλ& . Material parameters are representative of copper and are reported in 

Table 1 together with loading conditions. A dominant instability mode is emerging with maximum 
growth rate maxη and wave number maxk . The initial neck spacing is given by: 

 k/LkLneck max2 2 / 2 ππ ==          (2.7) 

The quasistatic theory, obtained by setting 0=Ip , indicates that 0max =k , see  Fig.3a, i.e. the neck 

spacing is infinite. For a plate of finite length, maxk would correspond to the smallest value of the 

wave number compatible with the boundary conditions at 
11 LX ±= , i.e. j= 1 in Eq.(2.3). Thus, in 

agreement with experimental results, a single neck is predicted by the quasistatic approach. Multiple 



necking is clearly an outcome of inertia effects. The effect of the stretch-rate is illustrated in Fig.3b: 

maxk  increases with λ& . Consequently, the neck spacing decreases at higher stretch-rates according to 

Eq.(2.8) and the number of necks increases, as observed in Fig.1a. 
 

Table 1. Material and loading parameters for the plate stretching problem 

Material parameters    38900 −= kg.mρ      MPaR 109=σ        
11 −= sRε&     05.0=m  

Loading conditions     1410 −= sλ&             mmL 3.02 =  

 
 
 

Inertia stabilizes the strain localization process. By comparing the dynamic and quasistatic theories it 
is seen in Fig.3a that small wave-number modes (large wavelength) are slowed down by inertia. In 
addition, Fig.3b shows that the relative growth rate maxη is a decreasing function of the stretch-rate. 
Therefore, necking is retarded by inertia at high loading rates. 

The damping of short wave-length modes seen in Fig.3 is a consequence of stress multiaxiality as 
shown in [6-7] by comparing the complete 2-D theory to a simplified one dimensional dynamic 
approach developed by Fressengeas and Molinari [15]. Finally, the neck spacing appears to be (via 
the selection of a dominant instability mode) the outcome of the competition between material 
inertia that extinguishes long wavelength perturbations and stress multiaxiality effects that slow 
down short wavelength perturbations.  

Recently, an extension of the classical linear stability analysis has been proposed by El Mai et al 
[45]. This approach allows for taking account of the contribution of all perturbation modes on the 
preliminary evolution of pre-necks. The distribution of pre-neck spacing could be characterized thus 
providing a deeper information as compared to the sole knowledge of the dominant neck spacing 
presented here.  
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Fig. 3. (a) Normalized growth rate η in terms of the normalized wave number k =kL2 in the initial 

state (  1=λ ) for 1410 −= sλ& . Material parameters are given in Table 1. The dominant mode is 
characterized by the wave number kmax and the normalized growth rate η max. With respect to the 

quasistatic theory, inertia slows down the long wavelength perturbations (small wave number) but 
has negligible effect on small wavelengths; (b) the number of necks is increases (largerk max ) with 

the stretch-rate λ& =V/L1 as in Fig.1a, while  the growth rate η max decreases (neck retardation). 

 

2.3  Neck retardation 



It was qualitatively shown with the linearized perturbation analysis that, in addition to the usual 
retarding effects of strain hardening and strain rate hardening, strain localization could be strongly 
slowed down by inertia. This delay leads to the phenomenon of neck retardation which is considered 
as beneficial in terms of an overall increase of ductility. To quantify neck retardation one has to 
recourse to a fully non-linear analysis. Initial defects have an essential role in controlling the level of 
strain at which localized necking is triggered, [9]. Inertia effects and neck retardation due to inertia 
were explored by finite element simulations for bars under simple tension, [17-20], and for ring 
expansion tests, [21-23].  

Xue et al [20] considered an infinite plate under plane strain constraint subject to the constant 
stretch-rateλ& . The flow stress is taken as rate-independent and given by the Hollomon 
law, N

eRe εσσ = . They worked with periodic unit-cells to explore the effect of a geometrical defect 

(amplitude and wave-length), material parameters and inertia on strain localization and neck 
retardation. Finite element calculations were performed on unit-cells of the type shown in Fig.2, with  

1/ LV=λ& . The initial thickness of the plate, h, has a sinusoidal imperfection with initial wavelength, 
Lw=2L1, and amplitude, 0η : h=h0(1-0.5η0 cos(2πX1/Lw) ), with h0=2L2. 

For several values of λ& , η0 and wL , Xue et al [20] calculated the overall strain at localized necking, 

Neckε . They demonstrated the existence of a critical wavelength for which Neckε is minimized for given 

values of  λ& and η0 . This critical wavelength corroborates the emergence of a dominant instability 
mode suggested by the linearized stability analysis. The critical wavelength is a decreasing function 
of the applied stretch-rate, in qualitative agreement with the linearized stability analysis. Thus, the 
number of necks increases at high strain rates. The retarding effect of inertia on localized necking 
was also quantified by Xue et al [20], see Fig.4.  

 
 

(a) (b)
 

Fig. 4.  (a) Results of the cell-model, Xue et al [20]. The necking strainε Neck increases with the 
normalized stretch-rate (neck retardation). The material response is rate-insensitive and described 

by the Hollomon law. Several hardening exponents, N, are considered. The amplitude of the 
geometrical defect is η0=0.04. The effect of the Young modulus, E, appears to be negligible.  (b) 

Arrested necks in a fragment of aluminum ring which was dynamically expanded, Zhang and Ravi-
Chandar [5]. 

 

2.4 Fragmentation 

The process of fragmentation of ductile rings subject to rapid expansion has been simulated with 
finite element calculations [24-26]. Zhou et al [16] have described the entire process of strain 
localization and fragmentation with a simplified one-dimensional framework using the Bridgman 
correction to account for stress multiaxiality within necked regions. The first stage is characterized 
by multiple necking with a characteristic neck pattern resulting from the selection of a dominant 
wavelength dictated by the interplay between inertia and material parameters. However, another 



selection process is appearing later. When strain localization proceeds, it is observed that some necks 
are arrested while others are evolving to complete fracture. The phenomenon of neck arrest is clearly 
seen in the experiments of Zhang and Ravi-Chandar [5], Fig.4b, and in the numerical simulations of 
Zhou et al [16]. Slow necks are arrested by unloading Mott waves [27] emanating from fast growing 
necks.  

The model of periodic unit-cells discussed in the previous section has a limitation since it assumes 
that the defects are periodically distributed along the sample (uniform wavelength and uniform 
imperfection amplitude).  In this approach all necks develop equally and are equally spaced. If 
fracture is assumed to occur at the same failure strain, all necks would break simultaneously and 
none of them would be arrested. Thus, neck arrest is due to irregularities in the material properties 
and sample geometry. Consequently, statistical aspects are essential features of a fragmentation 
theory.  Elegant and efficient theories of fragmentation based on statistical generation of fracture 
sites and occultation by unloading waves have been developed by Mott [27] and Grady [28]. 
However, in these approaches the material properties and defects are embedded in a “nucleation 
function” which governs the statistical generation of fracture sites. Actually, there is a need to link 
the fracture process to material and geometrical properties. The linearized stability analysis and the 
finite element simulations presented above are steps towards establishing this link, but further 
advances are still needed.   

A simple heuristic view of the process of neck arrest can be attempted. For convenience, we assume 
that a constant overall strain rate λλε /&& = is applied instead of the constant stretch-rate λ&as before. 
Consider two neighbour necks denoted as Neck1 and Neck2. We neglect in a first step any 
interaction between necks and we denote by )1(Failε (resp. )2(Failε ) the value of the overall strain at 

which failure occurs within Neck1 (resp. Neck2). Differences between )1(Failε  and )2(Failε are due to 

fluctuations in material and geometrical defects. Failure strains can be calculated by using finite 
element computational cell-models accounting for the dynamic localization process and a failure 
criterion. Failure occurs within necks with a time delay 

Failt δ  which is roughly given 

by εεδδ &/ FailFailt = , where )2()1( FailFailFail εεεδ −= . Denoting by 
neckL  the neck spacing, the time for the 

Mott unloading wave to travel with speed 
Mottc from one neck to the next one is 

MottneckTravel cLt / =δ .  

The slow neck is arrested if the unloading wave emanating from the fast neck arrives before 
completion of failure, i.e. if 

FailTravel tt   δδ < . This analysis is certainly oversimplified, but it clearly 

indicates that the phenomenon of neck arrest is more likely to occur at low loading rates and for 
large fluctuations of the defect’s amplitudes (leading to large 

Failεδ ), conditions under which  large 

values of  
Failt δ  are expected. In the ideal case of a material and structure free of defects, we have 

0=Failεδ  and no neck is arrested. 

When the loading rate ε&  is increased, εεδδ &/ FailFailt =  is approaching zero, although 
Failεδ  may be 

slightly growing with inertia effects. On the other hand it can be shown that 
neckL is decreasing to a 

non-zero asymptotic limit at high strain rates, Rodriguez et al [29]. It follows that at high values of ε&  
the characteristic unloading time 

MottneckTravel cLt / =δ tends to a non-zero limit, while 
Failt δ  is 

approaching zero. Therefore, the proportion of arrested necks is a decreasing function of  ε& , as at 
high loading rates less time is left to the Mott unloading waves to communicate between necks.  At 
very high strain rates, a situation is approached where all necks are fractured, and the fragment size 
is coming close to the neck spacing. Naturally the fragment size decreases with ε&  since the neck 
spacing and the number of arrested necks shrink with higher values of ε& .  

To summarize, the fragmentation process is controlled by interplay between material properties, 
inertia and statistical defects. Inertia effects are more pronounced at higher strain rates (reduction of 
the neck spacing and fragment size, absence of communication between necks, increase of the 
overall ductility). Then, statistical defects are getting less important and the problem turns out to be 
more deterministic. 

It is worth mentioning that similar conclusions are reached when dealing with multidimensional 
dynamic fracture of ductile materials (Grady [28]) or when considering brittle materials (Denouald 



and Hild [30], Forquin and Hild [31]) although the failure mechanics are quite different (necking 
versus micro-cracking).  
 

3. ADIABATIC SHEAR BANDING 

Ductile failure by adiabatic shear banding is frequently observed in metals subject to high loading 
rates especially when compressive and shearing modes are involved. Adiabatic shear bands (ASB) 
are seen in impact and penetration problems. They are also involved in fast forming processes such 
as forging and high speed machining.  ASB are narrow zones with thickness of the order of few 
micro-meters where shear deformation is highly localized. Here again, the process of strain 
localization is a consequence of plastic flow instability,  generally attributed to thermal softening due 
to heating by plastic work and quasi-adiabatic conditions. However, for some materials, other 
softening mechanisms such as dynamic recrystallization or phase transformation may be involved, 
see for instance Rittel et al [32]. Reviews on ASB can be found in Bai and Dodd [33] and Wright 
[34]. 

The spontaneous occurrence of a family of ASB and their collective behavior can be experimentally 
captured by considering the radial collapse of cylinders driven by explosive loading, Nesterenko et 
al [35] or electromagnetic pulses, Lovinger et al [36]. It is of interest to note that families of ASB 
with regular spacing are also observed in high speed machining of metals (chip segmentation) where 
shearing is the main deformation mode, Komanduri and Von Turkovich [37], Molinari et al [38], 
Miguelez et al [39], Molinari et al [40].  
 
 
 

 
Fig.5: Earthquakes at the interface of the Juan de Fuca and North American plates 
(www.pnsn.org/outreach/earthquakesources).  
 

There is a strong similarity between the analysis of dynamic necking in expanding rings and shells 
and adiabatic shear banding in collapsing cylinders, with however some important differences. 
Geometrical softening is not playing any role in the case of ASB. Instead, shear localization is driven 
by thermal softening and short wavelength perturbations are damped by heat diffusion. Similarly to 
the problem of multiple necking, higher strain rates promote inertia effects that are conducive to 
multiple shear banding and to a decreasing of the shear band spacing and fragment size. The shear 
band spacing was characterized by using perturbation approaches by Wright and Ockendon [41] for 
viscoplastic response with no-strain hardening and by Molinari [42] for strain-hardening materials. 
Recently, the fragmentation process associated to adiabatic shearing was addressed by Zhou et al 
[43] with the type of approach developed by Zhou et al [16] to investigate fragmentation by multiple 
necking. It was shown that the early stage of the localization process is well described with the linear 
stability analysis. The entire process of fragmentation, including shear band generation and growth 
as well as shear band arrest by unloading waves was described with non-linear calculations. The 



spacing between mature (non arrested) shear bands was found to be closer to that predicted by the 
momentum diffusion theory of Grady and Kipp [44] than by the linearized stability approach. 

 
Finally we will investigate the occurrence of shear flow instabilities in geophysical sciences. We will 
consider subduction zones that could be at the site of either deep earthquakes, [46],  or slow slip 
events, see Fig.5. Recent results obtained by Mercier, Molinari and Avouac [47] will be discussed. 
 

4   CONCLUSION 

 
We have seen that inertia can deeply act upon the mechanisms of dynamic ductile failure of 

metallic materials. The mark of inertia was recognized at the macro-scale and micro-scale levels and 
can bear different aspects:  
• Long wavelength perturbations and large scale defects are damped by inertia. Thus, the 
characteristic spacing between localization, fracture and damage sites is reduced at higher loading 
rates. 
• The growth rate of perturbations and imperfections is slowed down by inertia. Therefore, strain 
localization is retarded at high strain rates. This results in an increase of the apparent overall 
ductility.   
• Wave propagation phenomena are important aspects of dynamic failure. Dynamic failure can be 
triggered by wave interaction (spalling) or inhibited by unloading waves during fragmentation 
processes. 
In addition, we have discussed how thermal effects can substantially affect shear flow localization in 
metallic materials subjected to high strain rates (impact and high speed forming processes) and in 
geophysical sciences (deep earthquakes and slow slip events in subduction zones).  
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