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1. INTRODUCTION 
Each year thoracic aneurysms are diagnosed in approximately 15,000 people in the United States and 

more than 30,000 people in Europe (Clouse 1998). Of this number 50-60% are ascending thoracic 

aortic aneurysms (ATAA) (Isselbacher 2005). 

The study of the mechanical behavior of the human aorta is an important topic. In particular the 

rupture of the ATAA is an almost unexplored area. It is currently known that ATAA is caused by the 

remodeling of the arterial wall and its rupture is caused when the stress applied to the aortic wall 

locally exceeds its capacity to sustain stress (Vorp et al., 2003).  

In an attempt to understand the mechanical behavior of the aortic tissue; different authors have 

performed mechanical tests. Uniaxial tensile tests were performed by (Mohan and Melvin, 1982) on 

34 dumbbell healthy descending aortic specimens; concluding that the most reasonable failure theory 

for aortic tissue was the maximum tensile strain theory. Also performing uniaxial tests, (He and 

Roach, 1994) showed that aneurysms were less distensible and stiffer than healthy tissues. 

Using uniaxial tensile tests to compare healthy tissues with ATAA specimens (Garcia-Herrera et al., 

2011) concluded that the age, beyond the age of 35, was the cause of significant decrease of rupture 

load and elongation at failure. They found no significant differences between the mechanical strength 

of aneurysms and healthy tissues. In contrast, (Vorp et al., 2003) found a significant decrease in the 

tensile strength of the ATAA specimens and concluded that its formation was associated with the 

stiffening and weakening of the aortic wall. 

Providing data on the mechanical behavior in the physiological range, (Duprey et al., 2010) found that 

the aortic wall was significantly anisotropic with the circumferentially oriented samples being stiffer 

than the axial ones.  

The biaxial mechanical behavior of the aortic tissue can be investigated with bulge inflation tests.  

Dynamic and quasi-static bulge inflation tests (Mohan and Melvin, 1983) were performed in 16 

healthy descending aortas. The failure of the aortic tissue always took place with a tear in the 

circumferential direction. Similarly, (Marra et al., 2006) performed inflation tests using porcine 

healthy aortic tissues, showing that the rupture occurs with a crack oriented in the circumferential 

direction of the artery. More recently (Kim et al., 2012) performed inflation tests using ATAA 

specimens. Material parameters were identified using the virtual fields method (Grédiac et al., 2006; 

Avril et al., 2010) and the average Cauchy stress values at which the rupture occurred were derived for 

all the specimens.  

None of the studies mentioned above analyzed locally the rupture of the tissue from its first initiation. 

Moreover, all these studies derived average stress estimation across the specimens and none were able 

to show if the rupture initiates at the location of maximum stress or if the rupture was triggered by the 

existence of weakened parts within the tissue.  

Our objective was to address this issue by carrying out full-field measurements in human ATAA 

specimens tested in a bulge inflation test up to failure. In order to determine the cause and location of 

the rupture, thickness evolution estimations and local stress distributions were calculated during the 

inflation of the specimens. 
 

2. METHODS 
ATAA specimens were obtained from donor patients who underwent surgical replacement of their 

ATAA with a synthetic graft. The collection of the aortic tissues was done in accordance with the 
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guidelines of the Institutional Review Board of the University Hospital Center of Saint-Etienne. 

Specimens were kept at 4 °C in 0.9% physiological saline solution and testing was completed within 

24 hours of tissue harvest (Adham et al. 1996). Table 1 lists the demographic information for the 

collected ATAA specimens. 

 
Each ATAA (Fig. 1-a) was cut into 

square specimen approximately 45 x 

45 mm. Each specimen was then 

separated into two layers: intima-media 

and adventitia (Fig. 1-b). The average 

thickness of each layer was measured 

using a digital caliper; the layer of 

interest was put between two plastic 

plates and the thickness of the layer 

and the plates was measured. Then the 

thickness of the two plates was 

subtracted from the value. The ATAA 

layer was clamped in the inflation 

device so that the luminal or inner side 

of the tissue faced outward and the 

circumferential direction of the artery 

coincided with the horizontal axis of the clamp (Fig. 1-c). Finally a speckle pattern was applied to 

each sample using black spray paint (Fig. 1-c). Note that the side of each layer was chosen to face 

outward since the external surface was highly irregular making difficult for the speckle pattern to 

adhere to the surface. 

A hermetically sealed cavity was formed between the clamped ATAA layer and the inflation device. 

During the inflation test, water was injected at a constant rate by pushing a piston pump at 15 mm/min 

until the tissue ruptured. Simultaneously, the pressure was measured with a digital manometer 

(WIKA®, pressure gauge DG-10). Images were recorded using a commercial DIS-C system (GOM®, 

ARAMIS 5M LT) at every 3 kPa, until the sample ruptured (Fig. 2). The DIS-C system was composed 

of two 8-bit CCD cameras equipped with 50 mm lenses (resolution: 1624 x 1236 px). In this study, 15 

ATAA layers were successfully tested until rupture. Only the specimens that ruptured in their central 

area (without touching the boundaries of the inflation device) were used. 

Once the experimental procedure was completed, image processing was performed using Aramis® 

software. In each of the acquired images (Fig. 2), the Area of Interest (AOI), which was a circle 

measuring 30 mm diameter, was identified. A facet size of 21 px and a facet step of 5 px were chosen 

based on the speckle pattern dot size, distribution, and contrast. The selected facet size and step 

yielded a resolution of 0.54 µm for in-plane displacements and 1.5 µm for the out-of-plane 

displacement. 

Based on a technique called stereophotogrammetry, the 2D coordinates captured by both cameras were 

used to deduce the 3D coordinates of a cloud of points (Fig. 3) across the AOI throughout the test in 

the global coordinate system (GCS) (𝟏, 𝟐, 𝟑).  

To capture the kinematics of the membrane (Naghdi 1972; Green and Adkins 1970; Lu et al., 2008) 

we define the position vectors for a material point 𝑃 in the initial and deformed configurations as 𝑿(𝑃) 

and 𝒙(𝑃), respectively (Fig. 4). The surface is parameterized using a pair of surface coordinates 



𝜉𝛼(𝑃) = 𝑿(𝑃) ∙ 𝑬𝛼  where 𝑬𝜶 are the vectors of the GCS basis and 𝛼 = 1,2.  

The local covariant basis vectors 𝒈𝛼 and 𝑮𝛼 for the deformed and initial configurations, respectively, 

are found using the following relationships:  

 𝒈𝛼 =
𝜕𝒙

𝜕ξα
   𝑮𝛼 =

𝜕𝑿

𝜕ξα
 (1) 

The local contravariant basis vectors 𝒈𝛼 and 𝑮𝛼 are then defined as:  

 𝒈𝛼 =
𝜕ξα

𝜕𝒙
 𝑮𝛼 =

𝜕ξα

𝜕𝑿
 (2) 

The two-dimensional deformation gradient, 𝑭, is calculated from the current and initial basis vectors: 

 𝑭 =  𝒈𝛼 ⊗ 𝑮𝛼 (3) 

Then, at each material point, the two- dimensional Green-Lagrange strain is determined:  

 𝑬 =
1

2
(𝑭𝑇𝑭 − 𝑰) (4) 

 
 



 
 

To define the three-dimensional deformation, we set 𝜆3 = ℎ ℎ0⁄ , where ℎ and ℎ0 are the thicknesses in 

the deformed and undeformed configurations, respectively, and required the transverse shear strainsto 

vanish.  It follows that the three dimensional deformation gradient and Green-Lagrange strain tensor 

are given by:  

 𝑭 =  𝒈𝛼 ⊗ 𝑮𝛼 +  𝜆3 𝒏 ⊗ 𝑵   𝑬 =
1

2
(𝑔𝛼𝛽 𝑮𝛼 ⊗ 𝑮𝛽 + 𝜆3

2 𝑵 ⊗ 𝑵 − 𝑰)  (5) 

where 𝒏 and 𝑵 are outward unit normals to the surface in the current and initial configurations, 

respectively.  

The local equilibrium equations for the elastostatic problem may be written as (Naghdi 1972; Lu et al., 

2008; Zhao 2009): 

 
1

√𝑔
(√𝑔ℎ𝜎𝛼𝛽𝒈𝛼)

,𝛽
+ 𝑝𝒏 = 𝟎 (6) 

where 𝑔 = det (𝒈𝛼 . 𝒈𝛽) is the determinant of the metric tensor, ℎ is the current thickness, 𝑝 is the 

internal pressure applied for the inflation and 𝜎𝛼𝛽 are the components of the Cauchy stress tensor 𝝈 in 

the local covariant basis. 

Then, we approximate the spatial variations of all the quantities of Eq. 6 such as: 

 

√𝑔(𝒙)ℎ(𝒙)𝜎𝛼𝛽(𝒙)𝒈𝛼(𝒙)

= ∑ [√𝑔(𝒙𝒌)ℎ(𝒙𝒌)𝜎𝛼𝛽(𝒙𝒌)𝒈𝛼(𝒙𝒌)] 𝜑𝑘(𝜉1, 𝜉2)

𝑘

 

𝜎𝛼𝛽(𝒙) = ∑ 𝜎𝛼𝛽(𝒙𝒌)𝜑𝑘(𝜉1, 𝜉2)

𝑘

 

𝒏(𝒙) = ∑ 𝒏(𝒙𝒌)𝜑𝑘(𝜉1, 𝜉2)

𝑘

 

√𝑔(𝒙) = ∑ √𝑔(𝒙𝒌)𝜑𝑘(𝜉1, 𝜉2)

𝑘

 

(7) 

where 𝒙𝒌 is the current position vector of node 𝑘 in the mesh and 𝜑𝑘(𝜉1, 𝜉2) is a linear shape function 

of the surface coordinates which takes on a null value at all nodes of the mesh except at node k where 

it is 1. The shape functions are defined on a triangular finite element mesh having N elements and 

nodes (Fig. 5).  

 



 

Using this approximation scheme, Eq. (6) is written at the centroid of each element of the mesh. A 

linear system of 3N equations is produced. It contains 3𝐾 unknowns which are the 3 components of 

the Cauchy stress tensor in the local covariant basis at the 𝐾 nodes of the mesh. 

A convergence study showed that a mesh with N=1203 elements and 𝐾=644 nodes was a good 

compromise between precision and time of calculation.  

The system was completed by a set of equations on the boundaries of the tested area, where it was 

assumed:  

 (𝝈 ∙ 𝒋) ∙ 𝒏 = 0 (8) 

 (𝝈 ∙ 𝒋) ∙ 𝒊 = 0 (9) 

where 𝒊, 𝒋, 𝒏 defines at the boundaries a local basis (Fig. 5-b) with 𝒊 tangent to the boundary,  𝒏 

outward unit normal vector to the surface and  𝒋 = 𝒏 ⊗ 𝒊 . 

Along the boundaries, Eq. (8) sets that the traction vector was perpendicular to 𝒏 (in-plane traction 

vector) and Eq. (9) sets that the traction was perpendicular to 𝒊 (no shear along this boundary).  

The resultant boundary traction automatically balances the total pressure applied on the wall due to the 

local equilibrium equation (Eq. (6)) written for each element. The final over-determined linear system 

of equations was solved in the least-squares sense. 

The stress was analyzed at three locations:  

 NodeMAX: node with the largest stress eigenvalue 

 NodeTOP: node at the top of the inflated membrane 

 NodeRUP: node where rupture initiates 



 
 

At NodeMAX and NodeTOP locations, the largest eigenvalue of the Cauchy stress tensor (largest 

principal stress) were found and denoted 𝜎𝑀𝑎𝑥 and 𝜎𝑇𝑜𝑝, respectively. At NodeRUP, the stress in the 

direction perpendicular to the crack that occurs at rupture was computed:  

 𝜎𝑅𝑢𝑝 = (𝝈 ∙ 𝒒𝜽) ∙ 𝒒𝜽  (10) 

where 𝒒𝜽 is the unit vector perpendicular to the crack. It is derived for each specimen using the images 

obtained from the DIS-C system at the moment of the rupture. Using a custom Matlab® code, a series 

of points were manually placed on an image of the ruptured edge. A linear regression was then 

performed using those points and the angle between the fit line and the circumferential orientation 

(horizontal axis) was calculated.  

At every pressure step, the current thickness of each element was calculated. The aneurysmal tissue 

was modeled as incompressible membrane therefore the following relationship holds between the 

initial thickness, ℎ0, and the current thickness, ℎ.  

 ℎ =
ℎ0

𝐹11𝐹22 − 𝐹21𝐹12
 (12) 



 
 

We note that the ex vivo thickness, ℎ0, was assumed to be initially homogeneous and that 𝐹11, 𝐹22, 𝐹21 

and 𝐹12 were the components of the deformation gradient tensor (Eq. (3)).  

Laplace’s Law (Peterson et al., 1960; Humphrey 2002) was used to calculate a global estimate of the 

ultimate stress for each ATAA layer by assuming the sample was a hemisphere.  

 𝜎𝐿𝑎𝑝 =
𝑝𝑟

2ℎ
 (13) 

where 𝑝 was the inflation pressure, 𝑟 was the radius of curvature estimated using a least-squares 

surface fitting of the inflated shape, and ℎ was the average current thickness of the elements in the 

mesh.  

 

 
 

3. RESULTS 
Using the approach we have presented, the components of the Cauchy stress tensor were calculated at 

every node for each 3 kPa pressure step until the sample ruptures (Fig. 6-a). The displacement (Fig. 6-

b) and strain fields (Fig. 6-c) used to calculate the stress and thickness evolution are also shown. 



In Table 2 we report the three components of the Cauchy stress tensor. Our results (mean ± std) in the 

circumferential direction (𝜎11) were 1.18 ±0.64 MPa at NodeMAX, 1.12 ±0.64 MPa at NodeTOP and 

1.06 ±0.59 MPa at NodeRUP. The values for the axial direction (𝜎22) were 1.21 ±0.80 MPa at 

NodeMAX, 1.17 ±0.79 MPa at NodeTOP and 1.05 ±0.71 MPa at NodeRUP. 

In Fig. 7-a, we show the thickness distribution (Eq. (12)) one pressure step before rupture for five 

tests. For each of the samples thick (dark red) and thin (dark blue) regions can be identified. The 

locations of NodeMAX, NodeTOP, and NodeRUP for these five tests are also shown in Fig. 7-b. 

Contrary to the common idea that the rupture occurs at the location of the maximum stress, it was 

evidenced that rupture often initiates at a different location (NodeRUP), possibly due to the non-

homogeneous strength of the tissue. An image of the ruptured layer is shown in Fig. 7-c, where the 

magenta points and the blue regression line were used to determine the rupture angle 𝜃. 

Table 3 and Fig. 8 summarizes the three ultimate stress values (𝜎𝑀𝑎𝑥, 𝜎𝑇𝑜𝑝, and 𝜎𝑅𝑢𝑝) calculated at 

their corresponding locations (NodeMAX, NodeTOP and NodeRUP) compared with 𝜎𝐿𝑎𝑝 (Eq. (13)). 

For the six adventitia layers, the average stress values (mean ± std) were 1.49 ±1.06 MPa, 1.76 ±1.07 

MPa, 1.69 ±1.10 MPa, and 1.46 ±1.03 MPa for 𝜎𝐿𝑎𝑝, 𝜎𝑀𝑎𝑥,  𝜎𝑇𝑜𝑝, and 𝜎𝑅𝑢𝑝, respectively. For the 

remaining nine media layers, the average stress values were found to be 0.78 ±0.26 MPa, 1.01 ±0.36 

MPa, 0.95 ±0.31 MPa, and 0.78 ±0.20 MPa for 𝜎𝐿𝑎𝑝, 𝜎𝑀𝑎𝑥,  𝜎𝑇𝑜𝑝, and 𝜎𝑅𝑢𝑝, respectively. The four 

calculated ultimate stress values were higher for the adventitia layers, confirming its role of structural 

support of the artery (Fung, 1993). 

 

4. CONCLUSION 
Our results showed that rupture in the ATAA inflated layers was more prone to occur in regions where 

the layer was weakened. In most of the cases, rupture occurs where the thickness of the layer has been 

reduced the most. Visualizing the thickness evolution of the layer can easily predict the localization of 

the rupture. In a future work this approach could be used in vivo to track the stress distribution in real 

aneurysms using magnetic resonance imaging. It could be used to help clinicians to define a patient-

specific criterion for the risk of aneurysm rupture. 
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