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1 INTRODUCTION

Fibrosis, the formation of excess fibrous connective tissue, seems to be a common way an organism
finds for protection, foreign body reaction, and survival. Put on a solid substrate, a drop containing bac-
teria (bacillus subtilis) (Ben Amar and Wu, 2014) extends by constructing a fibrous gel called biofilm.
The fibrous matrix adheres strongly and organizes the cell division. For humans, fibrosis occurs as a
reaction of the immune system against aggression : wounds (Martin,1997), solid tumour growth (Sty-
lianopoulos et al., 2012), implants (Moyer and Ehrlich, 2013) and also severe obesity. When it becomes
excessive, it induces pathological complications, unaesthetic in the best cases, painful and dangerous
for survival in the worse cases. Moreover, the fibrotic tissue, difficult to eliminate physically, limits
the transport of drugs, and the preferred solution remains surgery. Fibrosis also occurs around growing
tumors. The competition between the immune system cells and the tumor cells is at the origin of the
formation of a dense extra-cellular matrix with severe consequences for blood/lymphatic vasculature
and drug transport. inside the tumors The course will be devoted to the biophysical and biomechanical
study of the growth of a collageneous tissue due to inflammation having in mind both the capsular
tissue around breast implants (Moyer and Ehrlich, 2013) and its excessive contracture but also the case
of desmo-plastic tumors. For both cases, there exists an immediate wound-healing response with a
complex signaling cascade , the final and long-term result being an encapsulation of the implant or
the tumor by an inflammatory collagenous tissue.For implants, more easy to study, several causes have
been investigated such as bacterial infection, anterior radiotherapy, structure and surface texture of the
implant.
I will show a bio-mechanical study including an evaluation of the stresses induced by the growth of the
capsular tissue. When it occurs, in the worse cases, the implant is crumpled or fractured, with visible
deformity of the breast and pain for the patient. The breast and implant deformations will be explained
by a buckling instability inducing a shape bifurcation due to constrained volumetric growth (Ben Amar
and Goriely, 2005). To reach this objective, however, requires a good representation of the elasticity
of such tissue. Volumetric growth itself generate automatically compressive stresses, increasing during
growth and explain the buckling of the samples, the change of shape and perhaps the dolor. Even in
the simplest case we can imagine, such as homogeneous volumetric growth of a Neo-Hookean elastic
sample, the tissues are submitted to these compressive stresses induced by growth but fibrotic tissues
are more complex, stiffer and the prediction of the stresses not obvious.
The stresses may have a double origin : passive or/and active. Passive elasticity for living tissues,
or dead elasticity (Thompson,1961) treats living matter as a soft inert material. When the structure
evolves with a time scale very long compared to the short time-scale of elasticity (of order the second),
the global shape of the sample remains a minimum of the elastic energy. Active means that the sample
contains specific cells acting like little compressive motors or point stress sources. Myo-fibroblasts,
also originated from the immune system, may play this role, contributing to the pathology. In case of
adult wound-healing as an example (Martin, 1997, Wu and Ben Amar, 2014), they are responsible of
the final closure of wounds. A good model may help to distinguish between both contributions although
we suspect, without precise observations, that these active cells do not exist at the early stages of the
pathology. Even remaining at the level of passive elasticity, one needs a correct constitutive law and one
part of this work is devoted to this determination by traction tests. We have performed these tests, for the
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FIGURE 1 – On top, left- bottom,left-A schematic example of capsular tissue attached to the traction ap-
paratus. Traction test are performed at constant velocity along the X direction.On top, right-Schematic
representation of the implant, the capsule and the skin-layer,bottom, right-Typical implant for evalua-
tion of the Young modulus using compression and the elastic Hertz contact theory

first time to the best of our knowledge, on surgical tissues obtained post- surgery. Although preliminary,
such experimental study is enough to establish a good model of the capsule tissue deformation as a
function of its extension.

2 POSITION OF THE PROBLEM, MATERIAL AND METHODS

The peri-prosthetic capsule is a normal physiological response to a foreign object introduced in human
body. Soon after surgery, the implanted prosthesis becomes surrounded by an immature tissue made
of fibrin mostly and phagocytes. Then collagen and inflammation lead to a mature capsule in 4 weeks
approximately. Capsular contracture is the excessive fibrosis around the implant that leads to a high re-
operation rate in the lifespan of patients. According to the International Society of Aesthetic and Plastic
Surgery, for aesthetic breast augmentation, complication rates are 1% per year, and after 10 years, the
rate for capsular contracture exceeds 10% but becomes about 25%, in case of reconstructive surgery
after breast cancer treatment. However, rather few publications with histological studies in function
of the severity of the pathology are available. According to Moyer and Ehrlich et al. (Moyer and
Ehrlich et al. , 2013) the collagen fibre organization around implant evolves from loosely organization
to well spaced thick collagen fibre network when the severity increases (measured by an index or
grade) from Baker Grade I up to IV. In addition cells present in light breast capsules like Mast cells
seem to disappear for more advanced pathologies. In this case, fibroblasts organize themselves parallel
to the fibres or in spiral fashion. The collagen network is cross-linked and more or less parallel to
the implant surface. In more advanced stages, muscle-like cells are recruited, contributing to a higher
state of stress. A more quantitative study has been published recently, covering capsular contracture
cases with all grades. It confirms the increase of the density of the collagen fibres with the grade, the
alignment parallel to the surface device (loosely oriented for low Grade, well oriented for contracted
capsules) and the presence of myo-fibroblasts for Grade IV capsules (Bui et al.,2015). For irradiated
patients, the histological damages and changes of the breast skin increases the probability of capsular
contracture of high grade.
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2.1 Specimen preparation and experimental results
9 biopsies were taken from patients : 5 with Baker III and IV capsular contracture, after implant based
reconstruction, and 4 cases concerned breast augmentation for aesthetic purposes (grade I). 2 patients
of the first category have previously received irradiation treatment after partial mastectomy. Samples
were harvested from surgical specimen of capsulectomy (anterior and posterior). Each sample is cut
from the anterior part of the surgical specimen. All the patients have the same brand of implant, the
same characteristic of silicone gel and of shell texture (Allergan 410, Anatomical textured implant,
texture : biocell). The dimensions of the samples were identical, 1 cm in width, 3 cm in length.The
thickness increases with the capsular contraction severity. The specimens were treated in less than
two-days (conservation in a sterile saline solution) for tension tests. Once they are excised, the stress
due to in vivo confined growth is eliminated, but solid stresses or residual stresses may remain in
absence of any loading. These stresses are the active part mentioned in the introduction or come from
plastic reorganization of the collagen or remodeling during the contracture. The best way to identify
such stresses is to cut cuboids carefully and observe the shape as time goes on, make incision and verify
the opening, in other words to play with simple shapes immediately post-surgery, then to examine them
after few hours.
The deformation of the sample if it occurs after a cut indicates the existence of residual stresses as
shown for desmoplastic solid tumors in (Stylianopoulos et al., 2012) for example. An opening indicates
a tensile stress and a cusp-like opening indicates a contractile state followed by a tensile one. With such
techniques, Stylianopoulos et al were able to evaluate the stresses stored during tumour growth of a
few kPa with a cartography of their orientation inside the tumor. Another evidence for the presence or
absence of residual stresses may be given simply by the behaviour of the uni-axial signal force versus
stretch for low loadings. For the set of samples covered by this study no obvious evidence was made
of possible residual stresses or of a high density of active cells.
Typical results of the traction experiments performed in the capsular tissues are shown in Figs. (2 A and
B), left , that can be compared to equivalent experiment for fabrics. An overview of our experimental
measurements indicates that samples can have a positive or negative initial curvature for tensional
loading versus stretch, then discontinuities indicating the breakage of fibres by an increase of the tensile
force and finally a saturation (see Fig.(2) A and B). To extract informations is made complicated by
the inherent diversity of human beings. However, the change of curvature at low stretch seems to be an
indication of the degree of the pathology. This change is theoretically examined in details in the next
section.

3 DETERMINATION OF CONSTITUTIVE LAWS

3.1 The space of configurations and the stress calculation
We focus here on a cuboid submitted to uniaxial tension along the X axis. We assume that the sample
has a length X0 before stretching larger than the width given initially by Y0 (in the Y direction) and a
thickness Z0 (in the Z direction). It extends in the X direction, keeping its cuboid shape. This assump-
tion is rather strong but has been checked carefully in our experiment. The surgical cuts are parallel to
the implant and correspond to the X, Y plane. We look for simplest solutions taking advantage of the
small values of Y0/X0 and Z0/X0 Then, all stretches defined by xi/Xi depend only on x, the current
configuration coordinate or equivalently on X , the coordinate in the reference configuration before
loading. Calling W the hyper-elastic energy, W is a function of the principal stretches : W (λ1, λ2, λ3)
with the Cauchy stress given by :

ti = λi
∂W

∂λi
− p. (1)

λi means the principal stretch in the i direction, ratio between the current length li of the sample and
the initial length Li, in the same direction. All these quantities λi (where the index i takes the value
1, 2, 3 meaning respectively x, y, z) and p being x dependent. The pressure p is a Lagrange multiplier,
which ensures the incompressibility of the sample, giving

λ1λ2λ3 = 1 (2)

In addition because of the mechanical equilibrium, it reads

∂t1
∂x

= 0. (3)
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FIGURE 2 – Experimental results : On left-A) Experimental stress-stretch relation for different capsular
tissues. The orientation of the fibres is unknown. The curves correspond to three different degrees
of severity of the fibrosis. The surgery corresponded to a case of breast augmentation for aesthetic
purposes. No patient in case A had received a previous irradiation treatment. B) Experimental stress-
stretch relation for different capsular tissues. The orientation of the fibres is also unknown. The surgery
corresponded to a case of an implant based reconstruction post-cancer. The patient in this case has
received an irradiation treatment. On right -On top, force versus stretch along the first direction for a
sample treated by Mooney-Rivlin biomechanical energy and fully disordered fibres in the C-B mode
(T = 1/2). The shear modulus is chosen as unit, ρ and ρ1 varies in order to change the curvature at
the origin according to Eq.(12). On bottom, Force versus stretch along the first direction for a sample
treated with Mooney-Rivlin bio-mechanical energy and oriented fibres. The shear modulus is chosen
as unit, ρ and ρ1 are fixed to give a priori a negative curvature with ρ = −0.85 and ρ1 = 3 but the fibre
orientation varies T = sin2 θ0.

So t1 is a constant along x. A similar equation applies for t2 and t3 which have also constant values in
the sample. Applying now the cancellation of the stress in the Y and Z direction, one gets

t3 = λ3
∂W

∂λ3
− p = 0→ p = λ3

∂W

∂λ3
(4)

Eq.(2) and (4) allow to solve λ2 and λ3 as a function of λ1 to recover the Cauchy stress t1 as a function
of only λ1. Our experiments determine the uniaxial force :

F = A0λ2λ3t1 = A0(
∂W

∂λ1
− p/λ1) (5)

with A0 = Y0Z0. Notice that F is directly proportional to the nominal stress (see the book by Ogden
(Ogden, 1984)).
The complete understanding of our experimental results requires a good model for the constitutive law
of these tissues with fibres but also a systematic study of these models versus the orientation, dispersion
and failure. The experimental analysis including the determination of fibres orientation and dispersion
by using optical methods will be considered in a future study. Let us focus in the analysis of our
results by using bio-mechanical models which incorporate fibre behaviour at a given orientation and
dispersion. Since most of the continuum biomechanics models superpose the elasticity of the ground
state to the one of fibres, let us begin by the ground state representation.
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3.2 The low stretch biomechanics model
For the ground matrix and applied homogenous strain, restricting on the Mooney-Rivlin model, the
energy density for the Mooney-Rivlin model is :

WMR =
µ

2

{
λ21 + λ22 + λ23 − 3 + ρ(λ21λ

2
2 + λ22λ

2
3 + λ23λ

2
1 − 3)

}
(6)

where the λi, as before, means the principal stretch li/Li. It is possible to replace λi by the first
invariants I1 and I2. The first invariant is I1 =tr[FFT] while the second I2 is defined by I2 =
1/2(I21−tr(FFT)2) with the deformation gradient being the tensor : F = ∇~R~r. In Eq.(6), µ is cal-
led the infinitesimal shear modulus (Ogden, 1984) , having the dimension of a pressure, the Pascal Pa
in international units.The Mooney-Rivlin model is an expansion of the elastic energy density limited to
I1 and I2. To ensure convexity at low strains, the dimensionless parameter ρ can be negative but larger
than −1, a restriction which may be revisited for fibrous elasticity.
Fibres (e.g. collagen) are a consequence of the inflammatory process. They may be disordered, poly-
disperse, cross-linked with arbitrary orientations or with a well defined orientation. They may also
contain diverse bundle families. Under stretch, they can reorient themselves in the direction of the
stretching or simply break as observed for the fabrics. We suspect that the network more or less stays
in the tangent plane of the implant surface. Here the simplest model able to represent our data with the
minimal set of independent parameters is taken, knowing that we are faced with fibre remodelling and
breakage.

3.3 Mooney-Rivlin and CB fibre model at fixed orientation
Let us begin with the CB model (Ben Amar et al, 2015) with fixed orientation θ0, θ0 being the angle
between the fibres and the stretch direction (X axis). Here I present only a model I have introduced for
oriented fibres. To the Mooney-Rivlin ground matrix I introduce an anisotropic contribution :

WCB =
µ1

2

∑
j=1,2

qj({Ce + C−1e − 2I) : (Ej ⊗ Ej)} (7)

where qj is the material parameter indicating the fibre reinforcements along the direction Ej . For
anisotropic materials and an in-plane cross-linked fibre networks, these parameters are a function of
the density of fibres times the strength of these fibres in the θ0 direction. Assuming that the main
directions are symmetric with respect to the X axis with equal strength and density, one derives :

WCB =
q

2
µ1((λ

2
1 +

1

λ21
− 2) cos2 θ0 + (λ22 +

1

λ22
− 2) sin2 θ0) (8)

with anisotropy only determined by the orientation. This orientation can be dispersed and can remodel
with the stretching, inducing a decrease of θ0. For the lack of knowledge of a preferred orientation,
let us choose cos2 θ0 = sin2 θ0 = 1/2 which also corresponds to an averaged fibre energy so a fully
disorganized fibre network and we find :

WCB =
q

4
µ1(λ

2
1 +

1

λ21
+ λ22 +

1

λ22
− 4) (9)

which simply modifies the coefficients of the Mooney-Rivlin contribution chosen for the ground ma-
trix, making it stiffer. The elastic density energy is then the sum of both energies as WMR + WCB. In
this case the calculus of the force can be achieved analytically and gives :

F = µA0

{
λ1(1 + ρ1(1− T ))− (ρ+ ρ1(1− T ))/λ31

+
ρλ41(ρ+ ρ1T )− (1 + ρ1T )

λ21
√

(ρλ21 + ρ1T + 1)(1 + λ21(ρ+ ρ1T ))

}
(10)

with ρ1 = qµ1/µ, (ρ1 being a dimensionless number characterizing the strength of the fibre network),
and T = sin2 θ0 which gives to leading order

F ∼ µA0{C3(λ1 − 1) + C4(λ1 − 1)2} (11)

5



 C3 =
3(ρ+1)2+4ρ1(ρ+1)+4ρ21(1−T )T

1+ρ1T+ρ

C4 = −6(1 + ρ+ ρ1(1− T )) + 3
2
(ρ+1)(2(1+ρ)+ρ1T (3−ρ)

(1+ρ1T+ρ)2

(12)

The model requires, as a necessary but not sufficient condition, C3 to be positive since it is propor-
tional to the shear modulus. Problems can occur when ρ is negative but only a negative ρ can allow a
change in the sign of the curvature (force versus stretch). Since C3 vanishes for ρ± = −1 − 2

3
ρ1(1 ±√

1− 3T (1− T ) , ρ can be negative and smaller than −1, the limit of stability of the Mooney-Rivlin
model with fibres. Since we allow remodeling, the sign of C3 will change also with T , so we must
work in a domain of parameters where C3 is always positive for any value of T , 0 ≤ T ≤ 1. However,
another limitation comes from the the fact that the force F can diverge. Indeed looking at Eq.(10), a
singularity automatically occurs as soon as ρ = −(ρ1T + 1)/λ21 which occurs surely for negative ρ
values, when we increase the stretching if the structure of the sample persists. Of course such range of
parameters must be eliminated if we remain in this model.

4 EVALUATION OF STRESSES

The capsule is the result of the growth of a thin layer of connective tissue. In case of breast recons-
truction, the fat and and gland are eliminated and the implant is covered simply by the nascent capsule
and skin. The capsule adheres to the implant, having no possibility to slide or detach. As a result, the
growth process is mainly directed along the implant along the normal, making the growth anisotropic
and generating automatically compressive stresses. These stresses which appear in the tissue and the
implant are called passive. They exist each time when the growth is forced in a direction due to the
implant and consists in a particular case of the Biot instability (Biot, 1963). They exist also for an
ordinary swelling process of polymeric gel attached on a solid substrate as shown by Tanaka (Tanaka
et al., 1987) in pioneering works and among others , for a review see (Dervaux and Ben Amar, 2012).
In addition these stresses induced a buckling of the growing layer which distorts the implant. As yet
mentioned, the implant has a semi-spherical geometry with a radius of order Ra = 6.2 cm. The sphere
geometry protects the implant from stresses, however as soon as the sphericity is lost, deformation and
stresses occur also in the implant. For completeness we evaluate the Young modulus of our silicone
implant by the method of Hertz contact (Landau,1970) (see Fig.(1), on top, right) and obtain 14.7 kPa.
Although the theory concerns Hookean elasticity and silicone is mostly Neo-Hookean, we get a good
fit . Our stress estimation needs to be compared with shear moduli for the healthy breast fat which
varies with the experimental techniques between 2 kPa (Jiang et al., 2015) up to 20 kPa and stiffens
in the vicinity of lesions 45.6 kPa for benign one up to 146 kPa for malignant one . All these results
have been derived with elasto-sonography in vivo. We aim now to evaluate the stresses in the capsular
tissues and perhaps to evaluate the active stresses if any. Let us evaluate first the radial deformation due
to growth.

4.1 The geometric and elastic deformation tensor
We consider a 3 layered-system in spherical symmetry (see Fig.(1), bottom, left), the implant having
the shape of a cap of radius Ra, the capsule occupies the space between Ra and Rb and the thin skin
layer the space between Rb and Rc. Because of the presence of the fibres, the growth is assumed
anisotropic and the growth tensor reads Fg = diag(gr, grgθ, grgθ). gr represents the relative growth in
the radial direction while gθ is an anisotropic coefficient, identical along meridians and parallels for
simplification. The relative volume increase JG is then given by JG = g3rg

2
θ . In addition the tissue can

be pre-stretched because of active cells and these stretches appear parallel to the implant surface. The
pre-stretch tensor which is also a compressive one, Fpt = diag(1,Λθ,Λφ), so the deformation gradient
becomes F = ∂x

∂X
= FeFgFpt and the elastic tensor is then

Fe =
1

gr
diag(

∂r

∂R
,

1

Λθgθ

r

R
,

1

Λφgθ

r

R
) (13)

Notice that both Λ′s are smaller than 1 in case of compressive active stretch which is expected here,
as a spontaneous reaction of the immune-system against the implant. The local volume increase is JG
is larger than 1 when the capsule grows. Due to the hypothesis of incompressibility valid for living
tissues, also for elastomers, detFe = 1, so

r2

R2

∂r

∂R
= JGΛθΛφ = J (14)
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with J = 1 for the implant and also the skin. Focussing only on the determination of the order of
magnitude for the stresses involved in the capsule formation, we restrict to a base state of deformation
which respects the circular geometry, and we do not treat the full buckling of the capsule with the
implant. J represents a control parameter of the buckling process, being a growing function of time if
the pathology persists. This full buckling instability is rather technical, some examples can be found in
(Ben Amar and Goriely, 2005) for the anisotropic spherical case and in (Wu and Ben Amar, 2014,Wu
and Ben Amar ) for the cylindrical geometry. The evaluation of the threshold instability given by the
critical radial geometric stretch r/R is derived via the solution of an eigenvalue problem involving the
control parameters which are, here, the pre-stretch values Λ′s and the growth eigenvalues gr and gθ.
Restricting on the simplest radial solution with an undeformed implant, with the capsule expanding
radially, we get the new position of the layers which reads :

r(R) =


R 0 < R < 1

{JR3 + (1− J)}1/3 1 ≤ R ≤ Rb

{R3 + (J − 1)(R3
b − 1)}1/3 Rb ≤ R ≤ Rc

(15)

where r(R) is the new position of the layer which was initially at a radius R. r(R) respects the conti-
nuity at the border zones. Each layer is very thin. In Eq.(15) and in the following, we choose as length
unit Ra the radius of the implant.

4.2 Radial Stresses
For simplicity let us assume Λθ = Λφ. In the spherical coordinate system and in the current configura-
tion, the equilibrium equation for the Cauchy stress σi = λi

∂W
∂λi
− pi (i refers to each layer) gives :

r
d(σ(i)

rr )

dr
+ 2(σ(i)

rr − σ
(i)
θθ ) = 0 (16)

that we can transform using the elastic stretch τ = r/(GiR) into

dσ(i)
rr

dτ
=

Ai
(Ai −G3

i τ
3)
Ŵ ′ (17)

with Ai, the coefficient of R3 into Eq.(15) : Ai = J for the capsule layer and Ai = 1 both in the
implant and the skin. Gi = Λθgθgr and Ai = J for the capsule layer while Gi = 1 for the implant
and the skin. As in (Ben Amar and Goriely,205) and (Ogden,1984), Ŵ is the elastic energy density
for incompressible material Ŵ = W (τ−2, τ, τ), function of a unique stretch eigenvalue, Ŵ ′ being its
derivative with respect to the stretch τ . This simplification assumes transversely isotropy. In practice
the radius of the implant (Ra = 6.2 cm) is larger than the thickness of the layers, of order the millimeter,
both for the capsule and the dermis. So the relative thickness eb of the capsule and ec the dermis are
small dimensionless parameters giving Rb = 1 + eb, Rc = 1 + eb + ec in the reference configuration.
To fix the stresses, we begin by the skin and we impose at the outer surface of radius, σrr|Rc = 0,
corresponding to mechanical equilibrium. So the radial stress inside the skin layer (where no distinction
is made between epidermis and dermis) is then given by :

σ(skin)
rr = −

∫ τc

τ

1

1− τ̃ 3
Ŵ ′
skindτ̃ (18)

Remember that Ŵ ′
skin is scaled by µskin the shear modulus coefficient of the skin density energy and

τskin is given by

τskin = (1 + (J − 1)(R3
b − 1)/R3)1/3 ∼ 1 + (J − 1)(1− 3e)eb (19)

The skin is obviously stretched, however, the stretch differs from 1 inside the skin by a second order
coefficient since e is the distance from Rb. So the compression of the skin is given by

σ(skin)
rr ∼ 1

3
Ŵ ′
skinLog

(τc − 1)

(τ − 1)
∼ Ŵ ′

skin(e− ec) (20)
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Since e is a dimensionless number corresponding to the radial position R−Rb divided by the implant
radius Ra, we recover the Laplace Law where the surface tension γ can be identified as Ŵ ′

skine/2 with
e given now in international units. For the growing capsule, we have

σcaprr = σskinrr |Rb −
∫ τb

τ

1

1− Λθgθτ 3
Ŵ ′
capdτ (21)

However due to the small thickness of this capsule compared to the initial radius of curvature of the
implant, we can estimate the elastic stretch inside the capsule to be :

τ ∼ 1

grgθΛθ

(1 + (J − 1)e) (22)

In this limit of small thickness, τ is close to a constant inside the capsule, being given by τcap =
1/(grgθΛθ). It is to be noted that in practice it is difficult to estimate independently these factors and
only τ−1cap can be estimated. The radial stress is then

σcaprr = σskinrr |Rb +
1

grgθΛθ

JŴ ′
cap|τ=τcap (e− eb) (23)

The capsule remains rather thin except for very pathologic cases, with a thickness which varies from
half a millimeter (corresponding to Baker Grade I) to 2 or 3 millimeters (for Baker grade III), which
remains small compared to a radius of curvature of order 6 cm, for the implant. Again the radial stress
scales as the thickness of the layers. Finally in the implant a radial stress exists at the border given by
σimprr = σcaprr |e=0 but our radially symmetric solution does not treat implant deformation. Nevertheless,
for a layer size which doubles from grade I to grade III a buckling of the layers occurs as shown in
(Ben Amar and Goriely, 2005), the hoop stress being compressive. So now we evaluate this quantity in
each layer.

4.3 Evaluation of the order of magnitude for radial and Hoop stresses, layer by layer
In each layer, in radial geometry we have

σθθ = σφφ = σrr +
τ

2
Ŵ ′ (24)

For the skin, taking into account Eq.(19, 20), we obtain

σskinθθ ∼ Ŵ ′
skin|τ=1(e− ec +

1

2
) (25)

This calculation assumes that there is no proliferation of dermal skin induced by this tensile state which
is probably not true. This point will be discussed later. In the capsular tissue, we have

σcapθθ = σskinrr |Rb + τcapŴ
′
cap(J(e− eb) +

1

2
(1 + e(J − 1)) (26)

with τcap = (grgθΛθ)
−1 and Ŵ ′

cap being defined for τ = τcap value which is smaller than 1. So the
stress is compressive. It is important to notice that the hoop stress is quite independent of the relative
thickness of the layer.

4.4 Stresses, buckling and pain
Here, we aim to estimate the mechanical stresses during fibrosis elaboration. Between a capsule of size
0.5 mm, a size we take as initial conditions, to a capsule of 2 mm, the size is multiplied by 4 which
is above the stability limit of a spherical layer according (Ben Amar and Goriely, 2005, Ben Amar
and Jia, 2013). Indeed the threshold for buckling instability is of order 1.5 for gr for a stiff substrate
and decreases when the substrate is much softer than the layer. We can surely claim that in Grade III,
we are above the stability of the spherical symmetry and the whole system will buckle. In addition,
our mechanical tests indicate that the tissue itself becomes more and more stiff, the stiffness being
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confirmed clinically, being part of the diagnosis. Nevertheless, it is interesting to evaluate the stresses
involved which manifest themselves by deforming the breast and implant, explaining the pain and so-
metimes the rupture of the implant. Let us begin with the skin. It is not so common to find data on
the skin, including the dermis, in vivo. Here again the thickness involved is of order mm. The Lan-
ger lines (Destrade et al., 2013) which give the main orientation of the collagen inside the skin can
be assumed along parallels and meridians at the level of the breast. Although we know that the skin
elasticity varies a lot along the body, we are not aware of a study of the skin at the level of the breast,
for young female beings. In (Destrade et al., 2013), a very precise analysis joining biopsies, traction
measurements and modeling have been performed, confirming that the Langer lines of surgeons cor-
respond to the main orientation of the collagen fibres of the dermis and the G-O-H model was shown to
correctly represent the skin elasticity in a range of traction identical to our traction test. The structural
parameters were evaluated with the coefficients µskin = 0.2014 MPa, k1 = 243.6 and k2 = 0.1327
while the dispersion coefficient κ = 0.1404. The skin is stretched by the capsule growth. Keeping the
G-O-H model of the skin, we find σskinθθ ∼ µskin/4 so the tension is of order 50 kPa. This number can
be over-estimated, however because it assumes no cell proliferation. Being under tension, so under the
homeostatic threshold, skin can grow to relax this tensile effect. In the capsular tissue, τ is a quantity
which is significantly smaller than 1 and we will choose 1/2 as a correct estimation. Taking this value
we derived σcapθθ = (1/32)µcap(505+126ρ+285ρ1). In the examined cases, we get a compressive stress
varying between 7 to 10MPa. This estimation is several orders of magnitude larger than the values of
breast fat. It may explain the sensation of stiffness of the capsule, the discomfort and the pain induced
by nerve compression.

5 CONCLUSION

Here we present a bio-mechanical study of the contracture of breast capsule at different degrees of the
pathology. A tensile test experiment of thin samples obtained few hours post-surgery allows to detect 2
different constitutive laws which may be put in correspondence with the clinical classification. Baker
grade I samples seems to present more anisotropy due to well oriented fibres, with breakage of the
weakest filaments as the stretch increases. Baker grade III samples are stiffer, however the orientation
effect seems to be lost indicating perhaps an increase of the internal disorder. The experiment covers
stretch values of order 1.6 corresponding to an elongation of 60%. We test two models of cuboid
fibrotic tissues under tension with the difficulty that these models, although common in the literature
of biomechanics, exhibit singular behaviour at large strains for some range of the parameters difficult
to predict a priori. However an estimate of the parameters corresponding to our results is possible,
allowing estimation of the stresses. Our conclusion is that the contracted tissue is extremely stiffer
in grade I and III compared to the implant stiffness and to the fat of the breast. This explains the
discomfort if the pathological tissue grows as a result of the inflammatory reaction. In addition a
buckling instability is expected, beginning at Grade III, leading to distortion of the implant, unaesthetic
appearance and sometimes implant rupture, also explained by the ratio between the shear modulus of
the implant and the contractile hoop stress of order 3%. Existence of active cells (myo-fibroblasts)
can also be suspected at Grade III/IV. However several tests done on the samples with arbitrary cuts
as performed in (Stylianopoulos et al., 2012) do not reveal existence of pre-stresses. Pre-stretches are
automatically included in the model, while pre-stresses can be introduced. The study of fibrous tissues
as a consequence of the immune system and inflammatory response is not limited to the capsular
contracture and may be applied to other pathologies such as cancer and severe obesity for example.
Future work will concern more advanced critical contractors and the relation between the structure at
the microscopic scale and the constitutive elastic laws valid at macroscopic scales.
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