

Fatigue gigacyclique des matériaux métalliques investiguée par des essais ultrasoniques : effets de fréquence, matériaux et mécanismes

Véronique Favier - veronique.favier@ensam.eu

N.L. Phung, N. Ranc, F. Valès, J. Dirrenberger, F. Adamski PIMM, ENSAM, CNRS, CNAM, Paris, France

A. Blanche, A. Chrysochoos LMGC, CNRS, Montpellier University, France

C. Wang, D. Wagner, C. Bathias LEME Paris-Ouest Nanterre University, France

Fondationcetim

sous l'égide de la Fondation de France

G. Thoquenne, F. Lefèbvre

N. Torabian, S. Ziaei-Rad (IUT Isfahan, Iran) J. Dirrenberger, F. Adamski PIMM, ENSAM, CNRS, CNAM, Paris, France B. Weber - ArcelorMittal

N. Marti, N. Saintier (I2M), F. Grégori (LSPM)

H. Mughrabi (Univ. Erlangen)

Fatigue gigacyclique Very High Cycle Fatigue

- Car engine: (crankshaft, ball bearings, etc.):

10⁸- 10⁹ cycles

- Wheel of a high speed train:

10⁹ cycles

- Large diesel engine for ship:

10⁹ cycles or more

- Turbine blade under 1 kHz vibration in-service resonance:

10⁹ cycles after 300 hours only!

Master MAGIS Cours VHCF: T. Palin-Luc V. Favier

Motivation Investigating VHCF

 Development of ultrasonic fatigue tests at a loading frequency of 20kHz (Stanzl-Tschegg and Bathias research teams)

	100 Hz	20 kHz
10 ⁶ cycles	< 3 h	50 s
10 ⁹ cycles	~ 116 days	~ 14 h

German Association for Materials Research and Testing e.V

> VHCF7 Seventh International Conference on Very High Cycle Fatigue

3 to 5 July 2017, Dresden, Germany

Scientific issue : Frequency effect ?

450

A present debate...

Tantalum annealed

Scientific issue : Frequency effect ?

A present debate...

Frequency insensitive fatigue response

SN curve for Udimet 500 (Nickel based alloy), R=-1, Bathias (1999)

Master MAGIS

Scientific issue : Frequency effect ?

Galtier and Cugy, MECAMAT Aussois, 2007

Macroscopic elastic response...but intrinsic dissipation (damping, self-heating)

SN curve for pure copper (Mughrabi, IJF, 2002)

Plastic shear strain amplitude < $10^{-5} \rightarrow$ microplasticty

VHCF: Context for mechanisms : crack initiation/crack propagation life

> 95% of the specimen fatigue life is consumed by the crack initiation process initiation stage.

Temperature field on the specimen surface cyclically loaded and just before failure – 42CD4 steel (stress aplitude=345 MPa, NF=1.76107 ctcles)

From (Xue et al, Fatigue Fract. Eng Mater. Struct, 2006) and (Wagner et al, Fatigue Fract. Eng Mater. Struct, 2010

Objectives

- What are the microplastic mechanisms leading to crack initiation at 20 kHz in the VHCF regime?
- Are they similar to the mechanisms involved during fatigue investigated using conventional fatigue machine (<100 Hz)?
- Are there differences between f.c.c. and b.c.c metals ?

Materials

α-brass (15 wt%Zn) f.c.c.

mean ϕ = 10 μ m

Pure copper (99.95% purity) f.c.c.

mean ϕ = 30 µm

α-iron (80 wt ppm carbon) b.c.c.

mean ø = 30 µm

50 µm

Ferritic-pearlitic steel (C45) b.c.c. mean $\phi = 40 \ \mu m$

Fondationcetim

sous l'égide de la Fondation de France

Ferritic-martensitic steel (DP600) b.c.c.

mean $\phi = 7 \ \mu m$

PhD N. Torabian (see poster session) B. Weber – ArcelorMital

Bathias and Paris (2004)

SN Curves

Favier et al, Int. J. Fatigue, 2016

Mechanical properties

Material s	Elastic anisotropy coefficient	UTS (MPa)	σ _D (MPa) (Fatigue strength at 10 ⁹ cycles)	σ _D /UTS
α -iron	2.4	400	190	0.47
α -brass	8	306	164	0.53
copper	3.3	232	90	0.39

Favier et al, Int. J. Fatigue, 2016

Self heating during cycling

Determination of the dissipated energy

Favier et al, Int. J. Fatigue, 2016

Phung et al, Int. J. Fatigue, 2013

Summary

for stress amplitudes of 50-60% of $\sigma_{\rm D}$ = 20-30% of UTS

Materials	Evolution of the dissipated energy per cycle during cycling	Evolution of PSMs
α-iron (b.c.c.)	constant	108 a 20 µm
α-brass (f.c.c.)	growing	5×10 ⁶ 5×10 ⁷ <u>10 μm</u>
Copper (f.c.c.)	growing	(b) 10 ⁷ 10 ⁸

Favier et al, Int. J. Fatigue, 2016

SN Curves Stress normalized by the flow stress

Strain rate sensitivity cannot explain alone the change in SN curves with frequency

Phung, Favier, Ranc, Vales, Mughrabi, Int.J. Fatigue (2014)

secondary

2 um

Slip markings morphology

Phung, Favier, Ranc, Vales, Mughrabi, Int.J. Fatigue (2014)

Criterion for slip markings of type II

Cubic elasticity

$$\tau^s = R^s_{ij}\sigma_{ij}$$

Maximum resolved shear stress

Phung, Favier, Ranc, Int.J. Fatigue (2015)

Criterion for slip markings of type III

Discussion

Phung, Favier, Ranc, Int.J. Fatigue (2015)

2 um

Conclusions

Response in VHCF at 20 kHz is very material-dependent.

Temperature during cycling has to be measured !!

For ductile single phase materials, slip band emergence are responsible for short crack initiation at the surface of the specimen as for LCF and HCF regimes.

Local stress heterogeneities mainly to anisotropic elasticity plays a key role in the slip band sites.

For copper (f.c.c.), frequency effects are attributed to time effect.

For ferrite (b.c.c), frequency effects are attributed to strain rate and temperature effects.

For multiphase materials, crack can initiate at internal defects

