Mécanismes d'amorçage et de propagation des fissures de fatigue dans le caoutchouc naturel chargé au noir de carbone

Bertrand HUNEAU¹

Ex-doctorants : Jean-Benoît LE CAM (2005), Stéphanie BEURROT (2012), Pierre RUBLON (2013), Isaure MASQUELIER (2014) Enseignants-chercheurs (les principaux) : Erwan VERRON¹, Jean-Benoît LE CAM², Yann MARCO³ Partenaires industriels : Pierre CHARRIER⁴, Daniel BERGHEZAN⁵

> ¹ Institut GeM, UMR 6183 CNRS, Ecole Centrale de Nantes
> ² Institut Physique Rennes, UMR 6251 CNRS, Univ. Rennes 1/ LC-DRIME (Cooper Standard / Univ. Rennes 1)
> ³ IRDL, FRE CNRS 3744, ENSTA Bretagne, Brest
> ⁴ Vibracoustic, Nantes
> ⁵ Michelin, Centre de Ladoux, Clermont-Ferrand

Fatigue des Structures et des Matériaux Colloque National MECAMAT AUSSOIS 2017 – du 23 au 27 janvier 2017

Plan

- 1. Contexte des études présentées
- 2. Le Matériau et les protocoles expérimentaux
- 3. Observation des faciès de rupture
- 4. Mécanismes d'amorçage des fissures de fatigue
 - Microtomographie à rayons X
 - Microscopie électronique à balayage
- 5. Mécanismes de propagation des fissures de fatigue
 - Microscopie électronique à balayage
 - Diffractions des rayons X

 Industrie automobile : fatigue de pièces anti-vibratoires et de pneumatiques en élastomères

Endommagement en **fatigue** du caoutchouc naturel (**NR**) :

 Amorçage de fissures (approche durée de vie = antivibratoire)

Propagation des fissures (approche « tolérance au dommage » = pneumatique)

Le caoutchouc naturel : un matériau extraordinaire !

Très bon comportement en fatigue du NR chargé
 Durées de vie du NR (diagramme de Haigh)

Pour une amplitude de déformation / contrainte donnée : durée de vie オ quand la déformation / contrainte moyenne オ (ou quand le rapport de charge R オ) → Attribué à la cristallisation sous tension (CST)

• Très bon comportement en fatigue du NR chargé

- Vitesse de propagation des fissures de fatigue + faibles pour le NR comparé au caoutchouc synthétique (SBR)
- Effet bénéfique d'un rapport de charge R > 0
 → Attribué à la cristallisation sous tension (CST)

Plan

1. Contexte des études présentées

2. Le Matériau et les protocoles expérimentaux

- 3. Observation des faciès de rupture
- 4. Mécanismes d'amorçage des fissures de fatigue
 - Microtomographie à rayons X
 - Microscopie électronique à balayage
- 5. Mécanismes de propagation des fissures de fatigue
 - Microscopie électronique à balayage
 - Diffractions des rayons X

2. Le matériau

Caoutchouc naturel chargé au noir de carbone : •

macromolécules de poly-isoprène réticulées au soufre

+ Charges nanométriques de noir de carbone (carbon black : **CB**)

Aggrégat

Particule 30 - 50 nm

Agglomérat 100 - 500 nm 500 nm – 500 µm

+ Additifs : **ZnO**, acide stéarique, antioxydant, plastifiants...

Hétérogénéités microstructurales (inclusions)

16 7

J.R. Katz, Naturwissenschaften, 13: 410-416, 1925 M. Tosaka *et al.*, Rubber Chemistry and Technology, 77: 711-723, 2004 B. Huneau, Rubber Chemistry and Technology, 84: 425-452, 2011

Colloque Mécamat - Aussois - 26/01/2017

2. Le matériau

Cristallisation sous tension (ou cristallisation induite par la déformation) des polymères

NR à température ambiante

Cristallites

2. Le matériau

• NR vulcanisé : un matériau de structure comme les autres ?

 $\mathbf{E} \sim 1 \text{ MPa} (= 100 \ 000 \text{ x moins qu'un métal})$ $\mathbf{R}_{m} \sim 30 \text{ MPa} (10 \text{ x moins qu'un métal})$ $\mathbf{A}_{0} \sim 500 \% (25 \text{ x plus qu'un métal})$

 Grandes déformations = grand avantage pour l'observation des fonds de fissure

2. Les protocoles expérimentaux

- Essais de durées de vie et de fissuration à déplacement imposé
- Essais jusqu'à rupture : faciès de rupture (MEB)
- Essais interrompus :

Plan

- 1. Contexte des études présentées
- 2. Le Matériau et les protocoles expérimentaux
- 3. Observation des faciès de rupture
- 4. Mécanismes d'amorçage des fissures de fatigue
 - Microtomographie à rayons X
 - Microscopie électronique à balayage
- 5. Mécanismes de propagation des fissures de fatigue
 - Microscopie électronique à balayage
 - Diffractions des rayons X

Observation des différentes zones d'endommagement

• Zone d'<u>amorçage</u> (en surface ou en sous-surface)

 Zone de <u>propagation</u> (surface très « rugueuse » avec des « arrachements »)

Mécanisme de formation expliqué dans la partie 5

Ref : J.-B. Le Cam, B. Huneau, E. Verron. International Journal of Fatigue 52, pp. 82–94, 2013.

Zone de propagation (stries) •

500 µm

500 µm

Régime des grandes vitesses de propagation : ~ 10^{-4} m/cycle

Mécanisme de formation des stries :

Le Cam & Toussaint, Macromolecules 43, 2010

Ref : J.-B. Le Cam, B. Huneau, E. Verron. International Journal of Fatigue 52, pp. 82–94, 2013.

Plan

- 1. Contexte des études présentées
- 2. Le Matériau et les protocoles expérimentaux
- 3. Observation des faciès de rupture
- 4. Mécanismes d'amorçage des fissures de fatigue
 - Microtomographie à rayons X
 - Microscopie électronique à balayage
- 5. Mécanismes de propagation des fissures de fatigue
 - Microscopie électronique à balayage
 - Diffractions des rayons X

4. Amorçage

Etude approfondie de l'amorçage autour d'inclusions.
 MEB et microtomographe X (thèse Isaure Masquelier)

Rq : microtomographie X : outil bien adapté à l'endommagement en fatigue des élastomères (Le Saux et al., PES, 2011 ; Le Gorju-Jago, RCT, 2012)

Basée sur des essais de fatigue interrompus

Eprouvettes observées à l'état étiré : 50% de déformation maximale

4. Amorçage (essais ex situ)

 Microtomographie X après 90000 cycles (déformation max. = 100%)

Endommagement sur toute la surface : au plan de joint (bavure) et hors du plan de joint

Endommagement volumique est très limité (lié à la géométrie de l'éprouvette)

Colloque Mécamat - Aussois - 26/01/2017

4. Amorçage (essais ex situ)

Amorçage en surface (MEB)

Au niveau du plan de joint avec au sans inclusion

En dehors du plan de joint sur des inclusions

Inclusions les plus dangereuses : agglomérats de CB

4. Amorçage (essais ex situ)

Mécanisme d'amorçage autour des agglomérats de CB

Agglomérat de noir de carbone

Caractéristiques de l'inclusion : - forte cohésion interne - forte adhésion avec la matrice

Stade 1 Décohésion au pôle

Stade 2 Ouverture sur les cotés

Stade 3 Propagation en surface et dans le volume

Stade 2 Ouverture sur les cotés

Stade 3 Propagation en surface et dans le volume

Ref : B. Huneau et al. Rubber Chemistry and Technology 52, pp. 82–94, 2013.

4. Amorçage

- **Bilan** : amorçage sur des défauts géométriques (plan de joint) et/ou sur des inclusions (noir de carbone,...)

- Utilité : critère énergétique en utilisant des données sur la population de défauts (cf. présentation Y. Marco) En cours : mesure d'auto-échauffement autour d'une inclusion (thèse de T. Glanowski)
- Utile aussi pour un calcul de la durée de vie par intégration de la loi de Paris (a₀ = taille inclusions)

Plan

- 1. Contexte des études présentées
- 2. Le Matériau et les protocoles expérimentaux
- 3. Observation des faciès de rupture
- 4. Mécanismes d'amorçage des fissures de fatigue
 - Microtomographie à rayons X
 - Microscopie électronique à balayage
- 5. Mécanismes de propagation des fissures de fatigue
 - Microscopie électronique à balayage
 - Diffractions des rayons X

5. Propagation

- Objectifs :
- comprendre les mécanismes d'endommagement qui produisent l'état de surface rugueux (« arrachements») des faciès de rupture
- 2. Expliquer les bonnes propriétés en fissuration du NR

Thèse Pierre Rublon (2013)

Premières études au MEB (thèse Jean-Benoît LECAM) :

Ref : J.-B. Le Cam, B. Huneau, E. Verron, L. Gornet. Macromolecules 37, pp. 5011-5017, 2004

Premières études au MEB (thèse Jean-Benoît LECAM) :

Ref : J.-B. Le Cam, B. Huneau, E. Verron, L. Gornet. Macromolecules 37, pp. 5011-5017, 2004

Premières études au MEB (thèse Jean-Benoît LECAM) :

NR très chargé en ZnO : phénomène de cavitation

Ref : J.-B. Le Cam, B. Huneau, E. Verron, L. Gornet. Macromolecules 37, pp. 5011-5017, 2004

Mécanisme de **propagation** comparé avec des images de microtomographie X

Coupes 2D de microtomographie X en pointe de fissure, résolution = 2,2 μ m

- Thèse S. Beurrot (2012) : mise en place d'un protocole expérimental pour observer la propagation de fissure de fatigue dans un MEB.
 - 3 étapes :
 - entaille au cutter
 - propagation dans une machine conventionnelle
 - propagation dans le MEB

Conditions :

- Amplitude de déplacement : 0-20mm (R = 0)
- Pause de 10 sec pour la photo
- 1 cycle = 20 min (f = 1 mHz 8), puis 2 min (nouveau réducteur)

Ref : S. Beurrot, B. Huneau, E. Verron, Journal of Applied Polymer Science 117, 1260–1269 (2010)

Ligaments rompus et rétractés = « arrachements » sur le faciès de rupture

- Autre spécificité de la fissuration en fatigue du NR : la ramification de fissure (branching)
- Dissipe de l'énergie et permet une bonne résistance à la propagation des fissures de fatigue
- Voir aussi bifurcation (macro) pour R > 0

Direction de propagation

Ref : S. Beurrot, B. Huneau, E. Verron, Journal of Applied Polymer Science 117, 1260–1269 (2010)

 Thèse de P. Rublon (2014) : essais sur éprouvettes de fissuration PS (fréquence ~ 0, 1 Hz)

• Bilan des essais MEB *in situ* :

Mécanisme de propagation des fissures de fatigue observé pendant l'essai de fatigue (ralenti) : explique les « arrachements » + ramification de la fissure principale Cohérent avec le bon comportement en fatigue

Hypothèse : lien fort avec la cristallisation sous tension

Mais attention ! Certaines spécificités du fond de fissure (ligaments) sont visibles dans des élastomères ne cristallisant pas (ex : silicone rubber, S.V. Hainsworth, Polymer Testing 2007 + observations récentes)

La cristallisation sous tension (CST) n'explique pas tout \otimes ... mais ça vaut quand même le coup de regarder \otimes

→ Etudier la CST (échelle nano) du NR pendant la fatigue par DRX (synchrotron) en pointe de fissure

(Thèse Pierre Rublon, 2013)

Machine de fatigue « maison »

Ligne de lumière DiffAbs Soleil

A partir du cliché DRX : taux de cristallinité

PRINCIPE

Effectuer une cartographie de mesures WAXD dans la zone en pointe de fissure sans arrêter l'essai de fatigue.

Temps d'acquisition : 1s

Ref : P. Rublon, B. Huneau, N. Saintier, S. Beurrot, A. Leygue, E. Verron, C. Mocuta, D. Thiaudiere, D. Berghezan, J. Synchrotron Rad. (2013). 20, 105–109.

« Contraintes » expérimentales

Post-traitement (cartographie des index)

Influence de l'extension globale imposée

Influence du rapport de charge

5. Propagation

Bilan des essais DRX • en pointe de fissure : bonne corrélation avec les essais de fissuration macro

10000

100000

Conclusions

- Amorçage au niveau de concentrateurs de contrainte : plan de joint / inclusions
- Mécanisme d'amorçage au niveau d'inclusions (dépend de la nature de l'inclusion et de son adhésion avec la matrice)

- Mécanisme de propagation (formation des arrachements sur les faciès) mis en évidence par des essais *in situ* au MEB
- **Cristallisation sous tension** : fatigue *in situ (DRX)* : résultats cohérents avec les courbes de fissuration
- Perspectives sur la propagation : essais in situ au MEB à R > 0 (bifurcation), liens entre le mécanisme et la cristallisation sous tension restent à explorer