

Introduction au dimensionnement en fatigue des structures sous chargements complexes

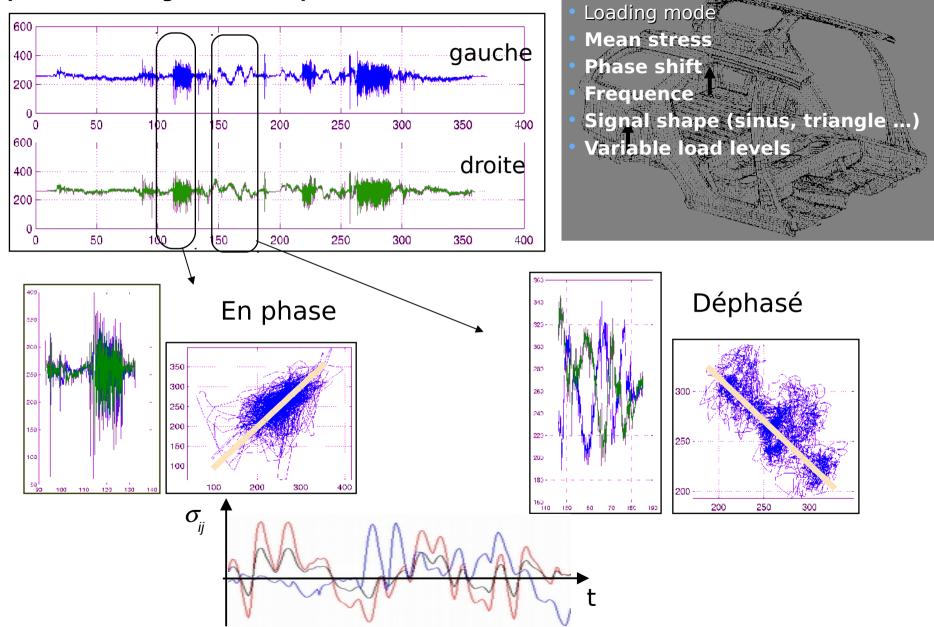
Thierry PALIN-LUC

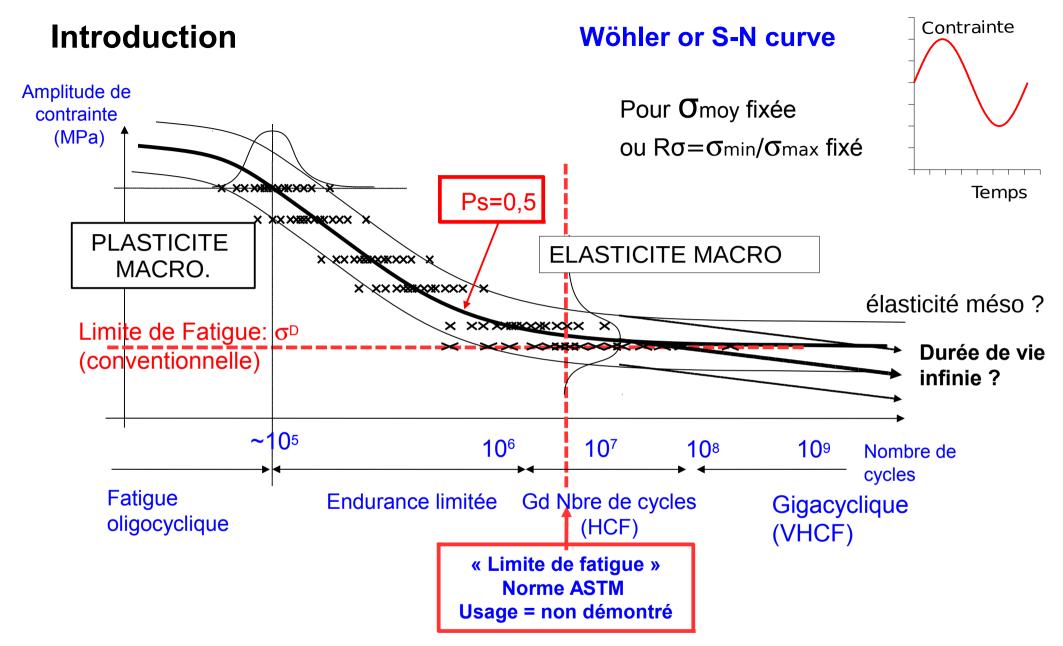
Institut de Mécanique et d'Ingénierie, UMR CNRS 5295 Arts et Métiers ParisTech, campus de Bordeaux

Contact: thierry.palin-luc@ensam.eu

Introduction

Chargement en service Séquence de chargement d'amplitude variable (PSA)





⇒ Cadre de cours : fatigue à grand nombre de cycles : 1E6 à 1E7 cycles

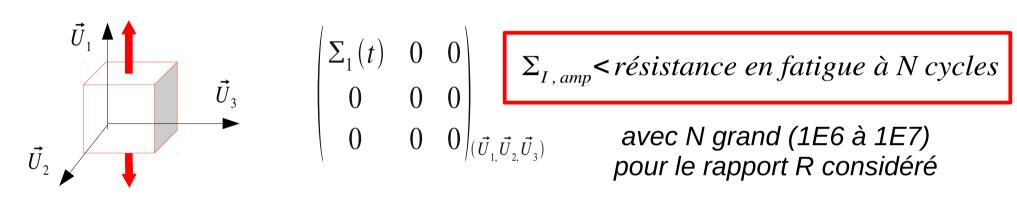
Régime gigacyclique (ou VHCF) : voir présentation de V. Favier

Plan

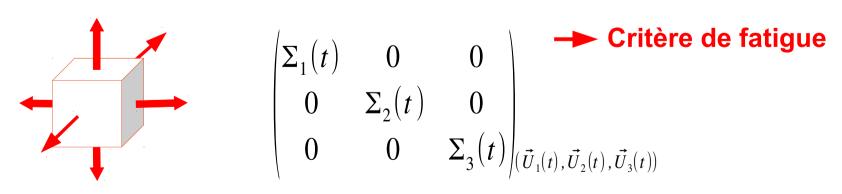
- **✓** Introduction
- ✓ I. Notion de critère de fatigue multiaxiale
- ✓ II. Quelques notations et définitions
- ✓ III. Différentes familles de critères de résistance à la fatigue
- ✓ IV. Critères non locaux
- ✓ V. Calcul de durée de vie sous chargements d'amplitude variable
- √ Conclusion

Pourquoi des critères de fatigue multiaxiale?

Si état de contrainte UNIAXIAL (une seule contrainte principale est non nulle au cours d'un cycle de chargement)



Si état de contrainte **MULTIAXIAL** (2 ou 3 contraintes principales sont non nulles)



Qu'est-ce qu'un *critère de résistance à la fatigue* ?

Définition : C'est un formalisme mathématique faisant intervenir des paramètres influents sur <u>l'amorçage d'une fissure</u> de fatigue sous chargement cyclique <u>d'amplitude constante</u>.

Un critère de fatigue permet de répondre à la question suivante :

✓ Est-ce que la pièce se fissurera sous le niveau de contraintes cycliques suivant avant N cycles (10⁷, par exemple)?

Un critère de fatigue <u>ne répond pas</u> à la question : quelle est la <u>durée de vie</u> ?

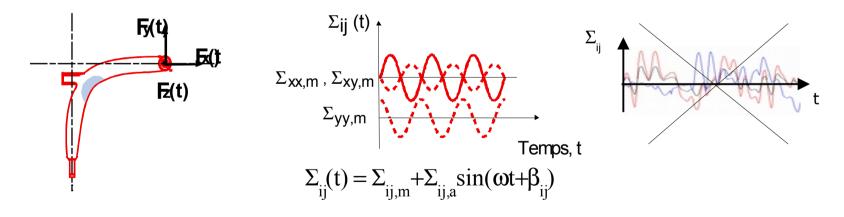
Qu'est-ce qu'un critère de résistance à la fatigue?

Définition : C'est un formalisme mathématique faisant intervenir des paramètres influents sur <u>l'amorçage d'une fissure</u> de fatigue sous chargement cyclique <u>d'amplitude constante</u>.

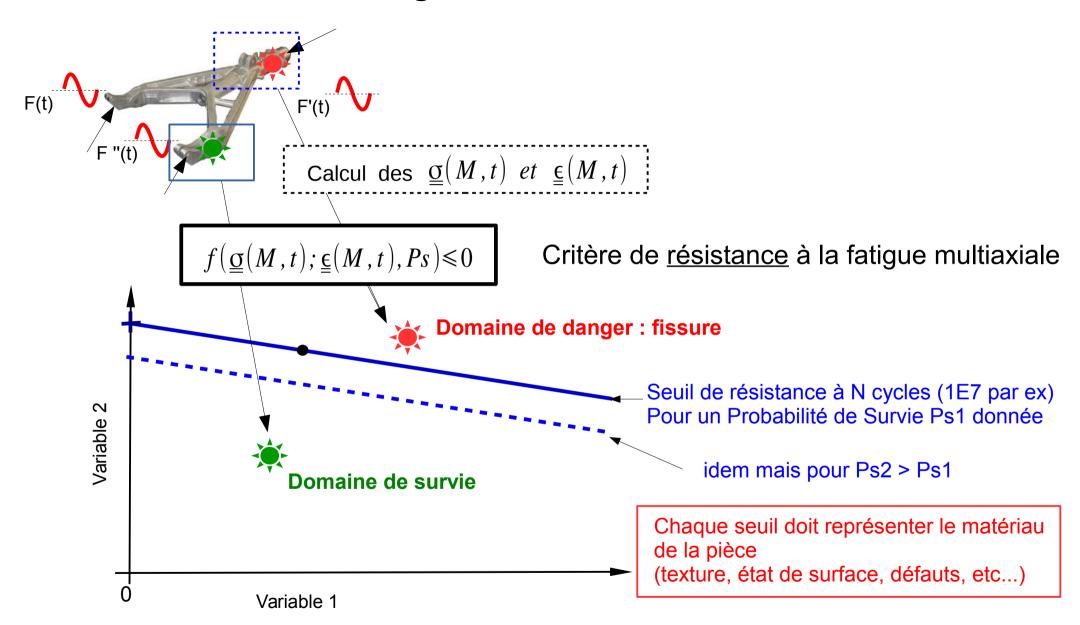
Un critère de fatigue permet de répondre à la question suivante :

✓ Est-ce que la pièce se fissurera sous le niveau de contraintes cycliques suivant avant N cycles (10⁷, par exemple)?

Un critère de fatigue ne répond pas à la question : quelle est la durée de vie ?

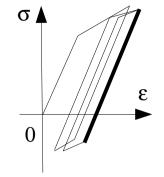


- Amplitude constante, chargements synchrones
- Etats de contraintes multiaxiaux (proportionnels ou non)



Critère ponctuel appliqué en chaque "point" de la pièce

✓ Hypothèse : état de contraintes et de déformations STABILISÉ tôt
et ADAPTATION si HCF

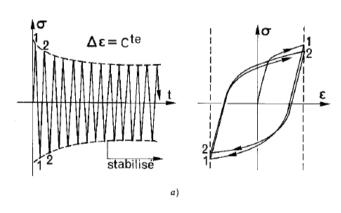


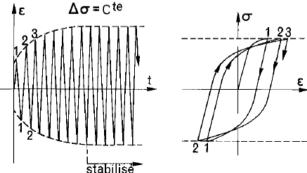
➤ On peut donc décrire / prévoir la résistance en fatigue (pour N cycles donnés) d'après des paramètres pertinents calculés sur une seule période.

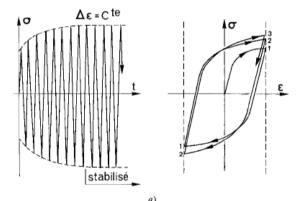
Connaitre le <u>comportement mécanique cyclique</u> du matériau utilisé dans les conditions de chargement étudié, représentatives de la pièce réelle *(cf cours de Eric Charkaluk)*

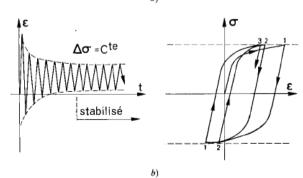
Même si HCF => élasticité macro plasticité à fond d'entaille par ex.

Rupture en fatigue d'un arbre d'hélice de yatch









- ✓ Contexte de ce cours
 - x Matériaux métalliques
 - x Grandes durées de vie : ~ 10⁶ à 10⁷ cycles
 - x Environnement : air, température ambiante
 - x Pas d'effet d'échelle
 - x Pas de propagation de fissure

(pas de "Tolérance à l'endommagement")

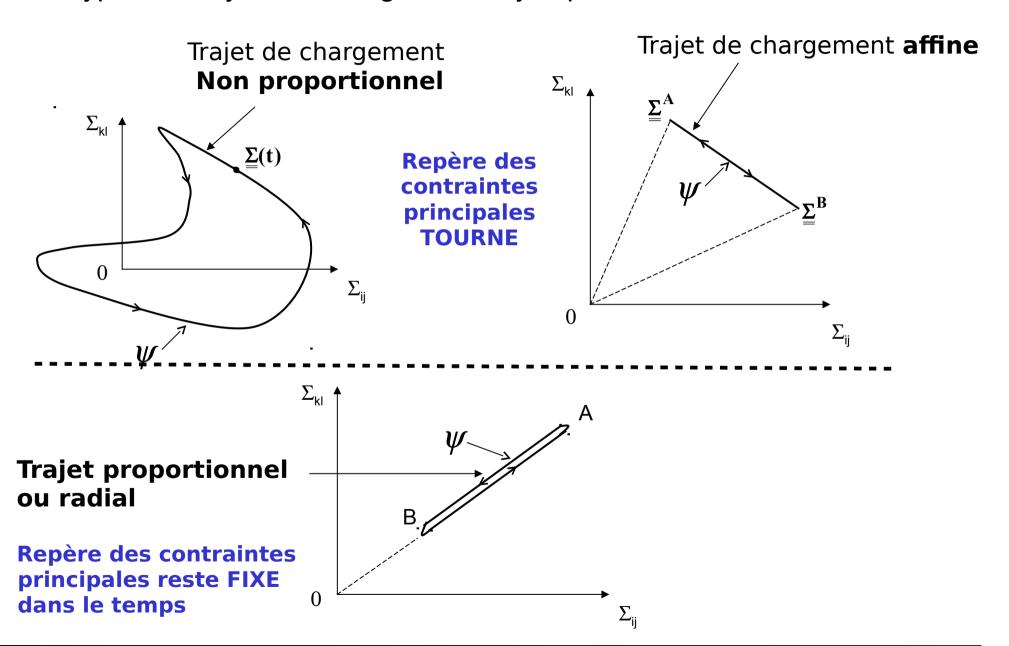
Introduction

I. Notion de critère de fatigue multiaxiale

II. Quelques notations et définitions

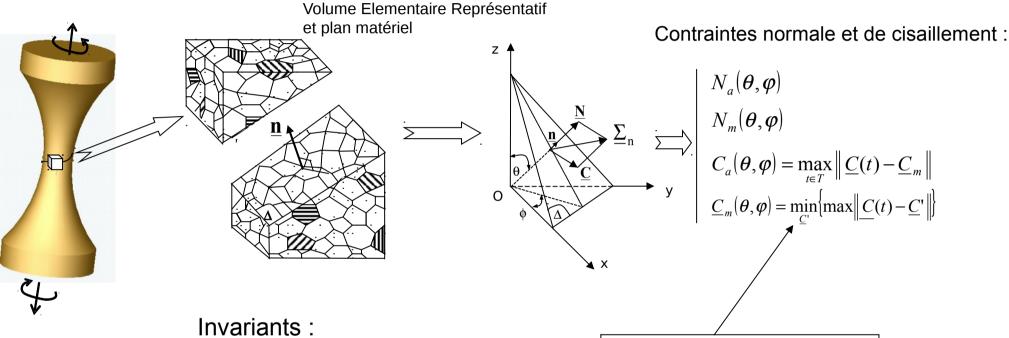
- III. Différentes familles de critères de résistance à la fatigue
- IV. Critères non locaux
- IV. Calcul de durée de vie sous chargements d'amplitude variable Conclusion

• Les types de trajets de chargements cycliques



Variables mécaniques utilisées dans les critères de fatigue mutiaxiale HCF

Contraintes agissant sur un plan matériel



$$\underline{\Sigma}(t) = \underline{S}(t) + \frac{1}{3} tr \left(\underline{\Sigma}(t)\right) \underline{I} \qquad \qquad \underline{\Sigma}(t) = \underline{S}(t) + \frac{1}{3} tr \left(\underline{\Sigma}(t)\right) \underline{I} \qquad \qquad \underline{\Sigma}(t) = \underline{S}(t) + \frac{1}{3} tr \left(\underline{\Sigma}(t)\right) \underline{I} \qquad \qquad \underline{\Sigma}(t) = \underline{S}(t) + \frac{1}{3} tr \left(\underline{\Sigma}(t)\right) \underline{I} \qquad \qquad \underline{\Sigma}(t) = \underline{S}(t) + \frac{1}{3} tr \left(\underline{\Sigma}(t)\right) \underline{I} \qquad \qquad \underline{\Sigma}(t) = \underline{I} \left\{ \max_{t \in T} \frac{tr \left(\underline{\Sigma}(t)\right)}{3} + \min_{t \in T} \frac{tr \left(\underline{\Sigma}(t)\right)}{3} \right\} \qquad \qquad \text{avec} \qquad \underline{S}_{m} : \min_{t \in T} \left\{ \max_{t \in T} \left\| \underline{S}(t) - \underline{S}_{m} \right\| \right\}$$

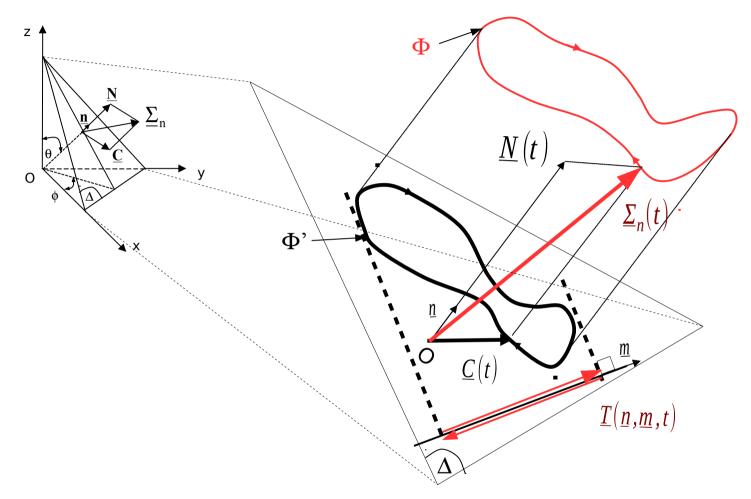
$$\left| \Sigma_{H,a} = \frac{1}{2} \left\{ \max_{t \in T} \frac{tr\left(\sum_{t \in T} (t)\right)}{3} - \min_{t \in T} \frac{tr\left(\sum_{t \in T} (t)\right)}{3} \right\} \right|$$

$$\Sigma_{H,m} = \frac{1}{2} \left\{ \max_{t \in T} \frac{tr(\underline{\Sigma}(t))}{3} + \min_{t \in T} \frac{tr(\underline{\Sigma}(t))}{3} \right\}$$

$$\sqrt{J_{2,a}} = \max_{t \in T} \left\| \underline{\underline{S}}(t) - \underline{\underline{S}}_{m} \right\| = \max_{t \in T} \sqrt{\frac{1}{2}} \left[\underline{\underline{S}}(t) - \underline{\underline{S}}_{m} \right] : \left[\underline{\underline{S}}(t) - \underline{\underline{S}}_{m} \right]$$

Plus petite hypersphère circonscrite

Variables mécaniques utilisées dans les critères de fatigue mutiaxiale HCF



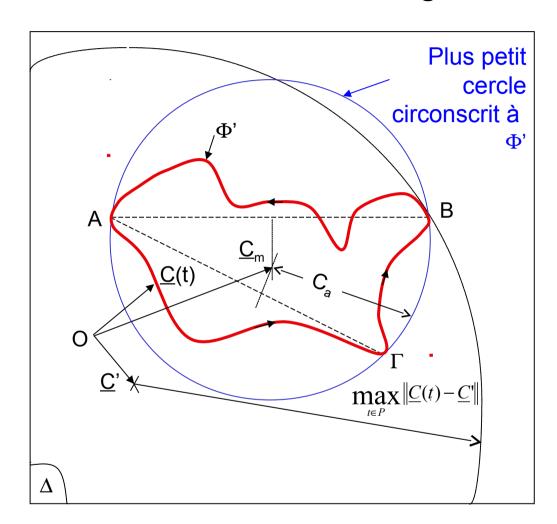
Evolutions sur un plan matériel Δ de normale \underline{n} , sous chargement cyclique complexe <u>périodique</u>:

- du vecteur contrainte $\underline{\Sigma}_n(t)$
- des contraintes normale $\underline{N}(t)$ et de cisaillement $\underline{C}(t)$,
- de la **cission résolue** $\underline{\mathsf{T}}(\underline{\mathsf{n}},\underline{\mathsf{m}},\mathsf{t})$ selon la direction $\underline{\mathsf{m}}$ du plan Δ

Variables mécaniques utilisées dans les critères de fatigue mutiaxiale HCF

$$C_{m} = \min_{C'} \{ \max \| \underline{C}(t) - \underline{C'} \| \}$$

$$C_a = \max_{t \in T} \|\underline{C}(t) - \underline{C}_m\|$$



Estimation de l'amplitude de cisaillement Ca à l'aide du rayon du plus petit cercle circonscrit au trajet de chargement.

Ainsi l'unicité de la contrainte moyenne de cisaillement est assurée

Introduction

- I. Notion de critère de fatigue multiaxiale
- II. Quelques notations et définitions

III. Différentes familles de critères de résistance à la fatigue

- Basés sur des invariants ou de type Von Mises
- De type plan critique
- Énergétiques
- IV. Critères non locaux
- V. Calcul de durée de vie sous chargements d'amplitude variable Conclusion

(un classement possible)

Basés sur des invariants ou de type Von Mises

```
Sines; Crossland ...
```

Contrainte ou déformations

Plan critique maco

```
Findley; Matake; Mc Diarmid ...
```

• Plan critique avec changement d'échelle méso – macro

```
Dang-Van; Papadopoulos; Morel ...
```

Energétiques

Plan critique

```
Macha et al.; Fatemie et Socie; Chu et al.; Liu et al. ...
```

Globaux

```
Ellyin et al.; Leis; Garud; Palin-Luc et al. ...
```

et bien d'autres, + de 50 dans la littérature...

⇒ De type invariants ou Von Mises

Critère de CROSSLAND (1956)

Hypothèses:

- Pas d'effet de la containte moyenne de cisaillement
- Effet de la contrainte hydrostatique

$$\sqrt{J_{2,a}}$$
 + a $\Sigma_{H,max} \leq b$

 S_{m} S_{k}

a et b constantes materiaux

$$\Sigma_{\mathrm{H,max}} = \frac{1}{3} \max_{\mathbf{t} \in T} \left[\mathrm{trace} \left(\underline{\underline{\Sigma}}(\mathbf{t}) \right) \right]$$
 : contrainte hydrostatique maximale sur un cycle

$$\sqrt{J_{2,a}} = \max_{t \in T} \left\| \underline{\underline{S}}(t) - \underline{\underline{S}}_{m} \right\| = \max_{t \in T} \sqrt{\frac{1}{2}} \underline{\underline{S}}(t) - \underline{\underline{S}}_{m} \right] : \underline{\underline{S}}(t) - \underline{\underline{S}}_{m}$$
: amplitude de $\sqrt{J_{2}}(t) = \sqrt{\frac{1}{2}} \underline{\underline{S}}(t) : \underline{\underline{S}}(t) : \underline{\underline{S}}(t) = \sqrt{\frac{1}{2}} \underline{\underline{S}}(t) : \underline{\underline{S}}$

$$\operatorname{avec} \ S_m \colon \min_{\underline{\underline{S}}'} \left[\max_{t \in T} \parallel \underline{\underline{S}}(t) - \underline{\underline{S}}' \parallel \right]$$

Critère de CROSSLAND (1956)

Identification de a et b d'après 2 limites de fatigue sur éprouvettes lisses, exemple:

$$a = \frac{\left(t_{-1} - \frac{f_{-1}}{\sqrt{3}}\right)}{\frac{f_{-1}}{3}} \qquad b = t_{-1}$$

Pour garantir un effet réaliste de la contrainte hydrostatique il faut :

$$\frac{f_{-1}}{t_{-1}} \leqslant \sqrt{3}$$

ou bien critère inadapté

⇒ De type invariants ou Von Mises

$$\sqrt{J_{2,a}}$$
 + a $\Sigma_{H,max} \leq b$

Torsion (R=-1)

$$\underline{\underline{\Sigma}}(t) = \begin{pmatrix} 0 & t_{-1} & 0 \\ t_{-1} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \sin(\omega t)$$

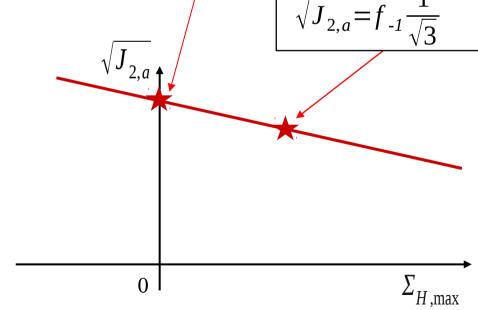
$$\Sigma_{H,max} = 0 \qquad \sqrt{J_{2,a}} = t_{-1}$$

Traction ou Flexion (R=-1)

$$\underline{\underline{\Sigma}}(t) = \begin{pmatrix} f_{-1} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \sin(\omega t)$$

$$\Sigma_{H,max} = \frac{f_{-1}}{3}$$

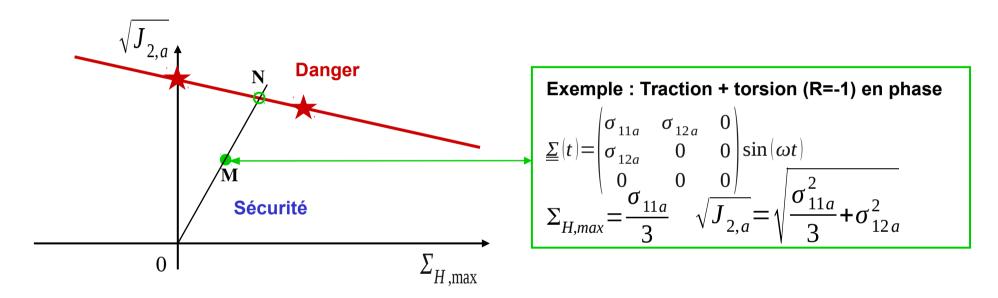
$$\sqrt{J_{2,a}} = f_{-1} \frac{1}{\sqrt{3}}$$



II. Différentes familles de critère Critère de CROSSLAND (1956)

⇒ De type invariants ou Von Mises

$$\sqrt{J_{2,a}}$$
+ a $\Sigma_{H,max} \leq b$



Coefficient de sécurité Cs=ON / OM

Cs > 1 : pas de fissure avant N cycles (ex 1E7 cy)

Cs <1 : amorçage de fissure avant N cycles (ex 1E7 cy)

$$Cs = \frac{b}{\sqrt{J_{2,a}} + a \Sigma_{H,max}}$$

Basés sur des invariants ou de type Von Mises

```
Sines; Crossland ...
```

- Contrainte ou déformations, plan critique
 - Plan critique maco

```
Findley; Matake; Mc Diarmid ...
```

• Plan critique avec changement d'échelle méso – macro

```
Dang-Van; Papadopoulos; Morel ...
```

- Energétiques
 - Plan critique

```
Macha et al.; Socie et al.; Chu et al.; Liu et al. ...
```

• Globaux

```
Ellyin et al.; Leis; Garud; Palin-Luc et al. ...
```

⇒ De type plan critique MACRO

Critère de MATAKE (1980)

Hypothèses:

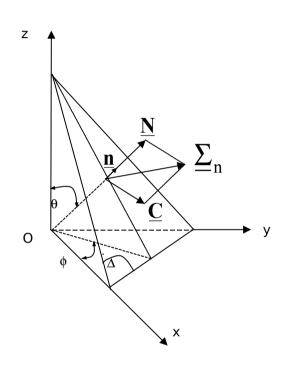
- Rôle important de l'amplitude de cisaillement sur un plan
- Assistée par la contrainte normale (cf. mode ouverture)

$$\begin{split} &C_a(\boldsymbol{\theta}^*, \boldsymbol{\phi}^*) + a \, N_{\max}(\boldsymbol{\theta}^*, \boldsymbol{\phi}^*) \leq b \\ &\text{avec le plan critique tel}: & (\boldsymbol{\varphi}^*, \boldsymbol{\theta}^*) : \max_{(\boldsymbol{\varphi}, \boldsymbol{\theta})} \{C_a(\boldsymbol{\varphi}, \boldsymbol{\theta})\} \end{split}$$

a et b constantes matériau

$$C_a(\theta^*,\phi^*)$$
 amplitude de cisaillement sur le plan critique

$$N_{\it max}(\theta^*,\phi^*)$$
 contrainte normale maximale sur le plan critique

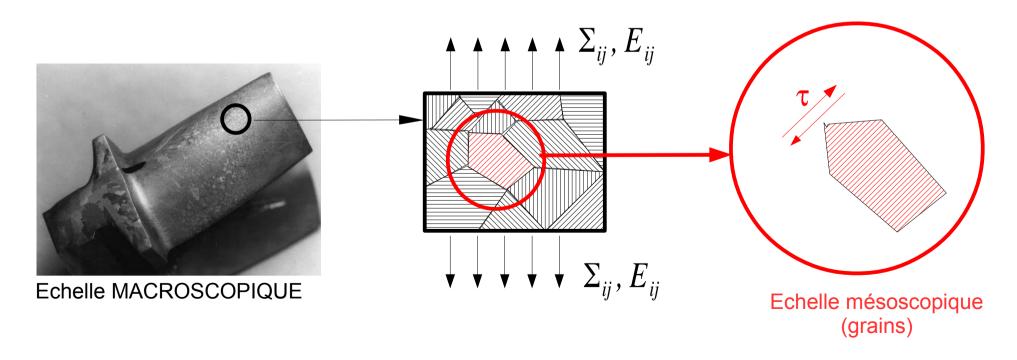


II. Différentes familles de critère ⇒ De type plan critique méso - macro Critère de DANG-VAN (1973)

Premier critère basé sur un changement d'échelle "méso / macro"

Hypothèses:

- Adaptation élastique du matériau ⇒ symétrisation de la cission
- Fissuration causée par une microplastification des grains, influencée par la contrainte hydrostatique
- Pas d'amorçage de fissure de fatigue à l'échelle mésoscopique si les contraintes à cette échelle, dans l'état adapté, ne violent pas le critère de plasticité mésoscopique.



II. Différentes familles de critère ⇒ De type plan critique méso - macro

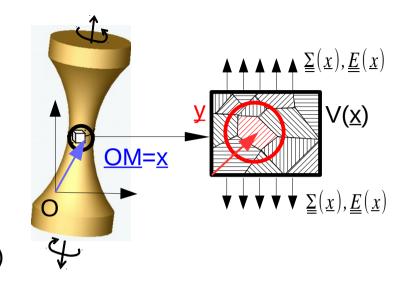
Critère de DANG-VAN (1973)

Changement d'échelle selon Hill et Mandel

$$\underline{\underline{\sigma}}(\underline{y},\underline{x}) = \underline{\underline{\underline{A}}}(\underline{y}) : \underline{\underline{\Sigma}}(\underline{x}) + \underline{\varrho}(\underline{y},\underline{x})$$

 $\underline{\underline{\underline{A}}}(\underline{\mathcal{Y}})$ Tenseur de localisation des contraintes dans $V(\underline{x})$

Q(y, x) Contraintes résiduelles locales (mésoscopiques)



Hyp: macroscopiquement le matériau reste élastique en fatigue à grand nombre de cycles, la matrice impose sa déformation aux quelques grains plastifiés $\underline{\underline{E}} = \underline{\varepsilon} \Rightarrow \underline{\underline{E}}^e + \underline{\underline{E}}^p = \underline{\varepsilon}^e + \underline{\varepsilon}^p$

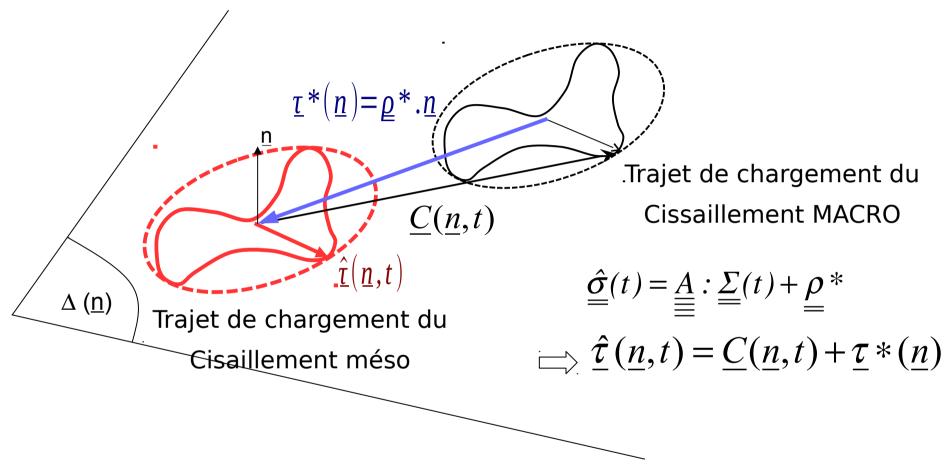
Hyp simplificatrice : grain et matrice ont même tenseur d'élasticité : $\underline{\underline{L}} = \underline{\underline{l}}$

$$\underline{\underline{L}}\underline{\underline{E}} = \underline{\underline{l}}\underline{\underline{\varepsilon}} \iff \underline{\underline{\Sigma}} = \underline{\underline{\sigma}} + \underline{\underline{l}}\underline{\underline{\varepsilon}^p} \iff \underline{\underline{\sigma}} = \underline{\underline{\Sigma}} - 2\,\mu\,\underline{\underline{\varepsilon}^p} \qquad \text{car }\underline{\underline{\varepsilon}^p} \text{ est un }\underline{\underline{\text{déviateur}}}$$

donc égalité des contraintes hydrostatiques "macro et méso" : $trace[\underline{\sigma}]/3 = trace[\underline{\Sigma}]/3 \Leftrightarrow \sigma_H = \Sigma_H$

$$\begin{vmatrix} \underline{\underline{A}}(x) = \underline{1} \\ \underline{\varrho} = -2\mu \underline{\varepsilon}^p \end{vmatrix}$$

II. Différentes familles de critère ⇒ De type plan critique méso - macro Critère de DANG-VAN (1973)



Symétrisation de la cission mésoscopique : construction du plus petit cercle circonscrit au trajet de chargement

$$\underline{\underline{\sigma}}(\underline{y},\underline{x}) = \underline{\underline{A}}(\underline{y}) : \underline{\underline{\Sigma}}(\underline{x}) + \underline{\underline{\rho}}(\underline{y},\underline{x})$$

$$\underline{\sigma} = \underline{\Sigma} - 2\mu \,\underline{\varepsilon}^{\,p}$$

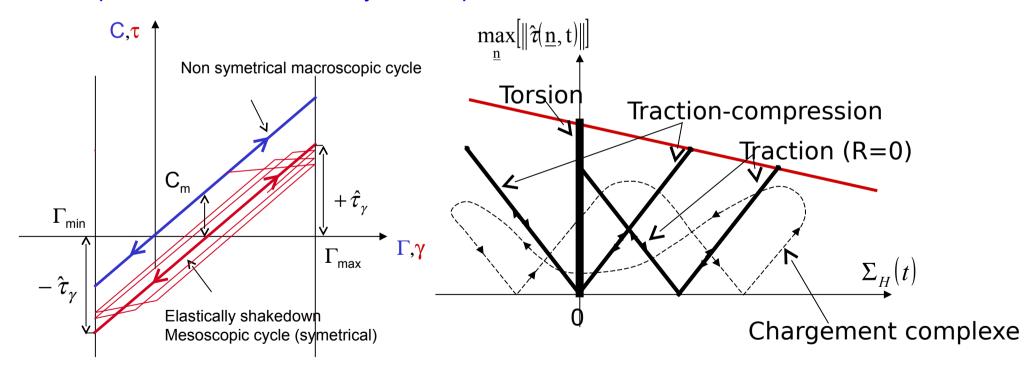
Lin-Taylor

II. Différentes familles de critère ⇒ De type plan critique méso - macro Critère de DANG-VAN (1973)

$$\max_{\underline{n}} \left\{ \max_{t} \left[\| \hat{\tau} (\underline{n}, t) \| + \alpha \sigma_{H}(t) \right] \right\} \leq \beta$$

Hypothèses:

- Les grains ne se fissurent pas si il s'adaptent élastiquement
- Effet important de la contrainte hydrostatique



Nota : Si chargement propotionnel le plan critique est calculable analytiquement

$$\hat{\tau}(\underline{n},t) = C(\underline{n},t) - C_m$$
 et $\sigma_H(t) = \Sigma_H(t)$

II. Différentes familles de critère ⇒ De type plan critique micro-macro Critère de DANG-VAN (1973)

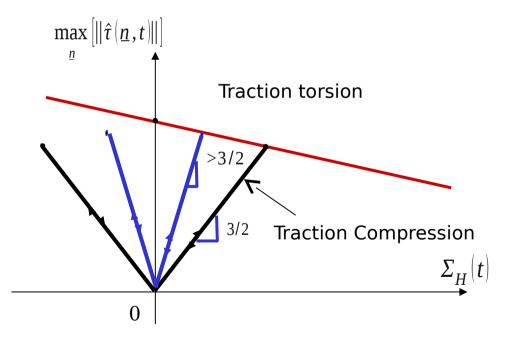
Chargement traction (ou flexion)-torsion combinées purement alternées

$$\underline{\underline{\Sigma}}(t) \colon \begin{bmatrix} \Sigma_{xx}(t) & \Sigma_{xy}(t) & 0 \\ \Sigma_{xy}(t) & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\Sigma_{xx}(t) = \Sigma_{xx,a} \sin\left(\frac{2\pi}{T} t\right)$$

$$\Sigma_{xy}(t) = \Sigma_{xy,a} \sin\left(\frac{2\pi}{T} t\right)$$

$$\underline{\underline{\Sigma}}(t) : \begin{bmatrix} \Sigma_{xx}(t) & \Sigma_{xy}(t) & 0 \\ \Sigma_{xy}(t) & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \qquad \underline{\Sigma}_{xx}(t) = \Sigma_{xx,a} \sin\left(\frac{2\pi}{T}t\right) \\ \Sigma_{xy}(t) = \Sigma_{xy,a} \sin\left(\frac{2\pi}{T}t\right) \\ \Sigma_{xy}(t) = \Sigma_{xy}(t) = \Sigma_{xy}(t)$$



On peut donc identifier α et β d'après 2 limites de fatigue sur éprouvettes lisses :

$$\alpha = \frac{t_{-1} - \frac{f_{-1}}{2}}{\frac{f_{-1}}{3}} \qquad \beta = t_{-1}$$

Pour garantir un effet réaliste de la contrainte hydrostatique il faut :

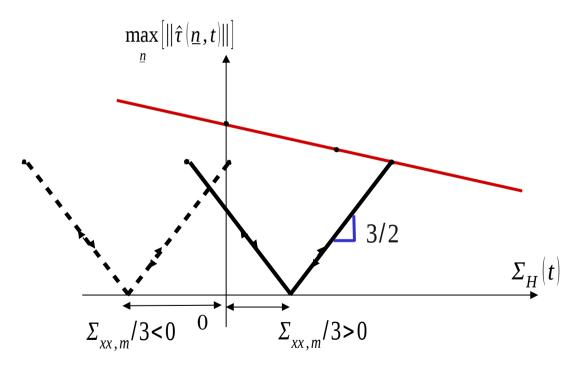
$$\frac{f_{-1}}{t_{-1}} \leqslant 2$$

II. Différentes familles de critère ⇒ De type plan critique micro-macro Critère de DANG-VAN (1973)

Chargement uniaxial avec contrainte moyenne

$$\underline{\underline{\Sigma}}(t) : \begin{bmatrix} \Sigma_{xx}(t) & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\underline{\underline{\Sigma}}(t): \begin{vmatrix} \Sigma_{xx}(t) & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} \qquad \Sigma_{xx}(t) = \Sigma_{xx,a} \sin\left(\frac{2\pi}{T} t\right) + \Sigma_{xx,m}$$



$$\max_{\underline{n}} [\|\hat{\tau}(\underline{n},t)\|] = \frac{\Sigma_{xx,a}}{2} \sin\left(\frac{2\pi}{T}t\right)$$

$$\Sigma_{H}(t) = \frac{\Sigma_{xx,m}}{3} + \frac{\Sigma_{xx,a}}{3} \sin\left(\frac{2\pi}{T}t\right)$$

Illustration de l'effet du signe de la contrainte hydrostatique

II. Différentes familles de critère ⇒ De type plan critique micro-macro

Découle notamment du critère de DANG-VAN

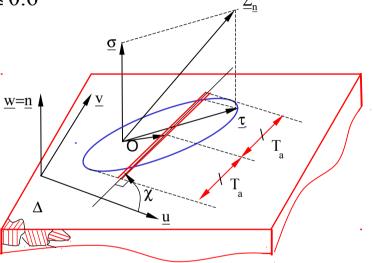
PAPADOPOULOS (1993)

⇒ Pour les métaux "ductiles" tels que : $0.5 \le \tau_{-1}^D/\sigma_{-1}^D \le 0.6$

où
$$T_{\sigma}(\theta, \phi) = \sqrt{\int_{\psi=0}^{2\pi} T_a^2(\theta, \phi, \chi) d\chi}$$

Ta = amplitude de la cission résolue

$$\max_{\theta, \phi} [T_{\sigma}(\theta, \phi)] + a \Sigma_{H, \max} \leq b$$



 \Rightarrow Pour les métaux "fragiles" tels que : $0.6 \le \tau_{-1}^D/\sigma_{-1}^D \le 0.8$

où
$$M_{\sigma} = \sqrt{\frac{5}{8\pi^2} \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} T_{\sigma}^2(\theta,\phi) \sin\theta \,d\theta \,d\phi}$$

$$M_{\sigma}(\theta, \phi) + a \Sigma_{H, \max} \leq b$$

 $M\sigma$ = moyenne de $T\sigma$ sur tous les plans au point considéré

Basés sur des invariants ou de type Von Mises

```
Sines; Crossland ...
```

- Contrainte ou déformations, plan critique
 - Plan critique maco

```
Findley; Matake; Mc Diarmid ...
```

• Plan critique avec changement d'échelle méso – macro

```
Dang-Van; Papadopoulos; Morel ...
```

- Energétiques ou homogènes à une énergie
 - Plan critique

```
Macha et al.; Socie et al.; Chu et al.; Liu et al. ...
```

Globaux

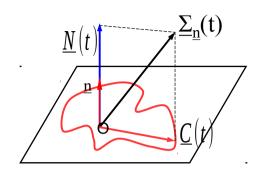
```
Ellyin et al.; Leis; Garud; Palin-Luc et al. ...
```

Voir synthèse dans: Macha and Sonsino, Fat. Fract. Engng. Mat. Struct. (1999)

⇒ Energétique de type PLAN CRITIQUE

Vecteur contrainte:
$$\underline{\Sigma}_{\underline{n}}(t) = \underline{N}(t) + \underline{C}(t)$$

Vecteur déformation:
$$\underline{E}_n(t) = \underline{\varepsilon}(t) + \gamma(t)$$



- SOCIE (1993) : $N_{\max} \mathcal{E}_a \leqslant Cte$ sur le plan critique $\underline{\mathbf{n}}(\theta^*,\phi^*)$, tel que: $(\theta^*,\phi^*) = \max_{(\theta,\phi)} \Delta \mathcal{E}(\theta,\phi)$ et aussi Smith Watson Topper
- CHU et al. (1993) : "Travail spécifique de cisaillement" : $W_{ws} = \left(2C_{\max}\gamma_a + N_{\max}\varepsilon_a\right) \leq Cte$ (sur le plan supportant le max de W_{ws})
- GLINKA (1995) : énergie de déformation due à la contrainte normale et à la contrainte de cisaillement

$$W^* = (N_a)(\varepsilon_a) + (C_a)(\gamma_a) \leq Cte$$

sur le plan dont la normale supporte la déformation longitudinale maximale

⇒ Energétique de type GLOBAL

Ellyin et Golos (1988)

$$\Delta W_t = \Delta W_e^+ + \Delta W_p \leq Cte$$

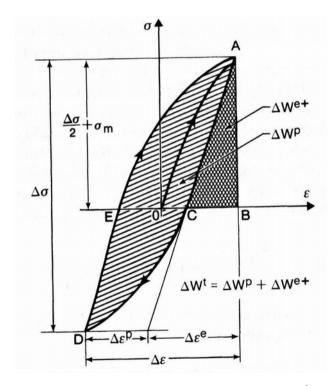
- Energie élastique de déformation en traction :

$$\Delta W^{e+} = \frac{1 - 2\nu}{6E} \left((I_1^{max})^2 - \left(I_1^{min} \right)^2 \right) - \frac{1 + \nu}{E} \left(J_2^{max} - J_2^{min} \right)$$

$$\begin{split} I_1^{max} &= \sum_{i=1}^{3} \sigma_i^{max} H(\sigma_i^{max}) \\ J_2^{max} &= \max_t J_2(t) \end{split}$$

- Energie de déformation plastique

$$\Delta W_p = \int_{cvcle} \Sigma_{ij} d \, \varepsilon_{ij}^p$$



Nota: étendu à la fatigue oligocyclique avec: $\Delta W_t = \Delta W_e^+ + \Delta W_p = K N^{\alpha} + C$

Introduction

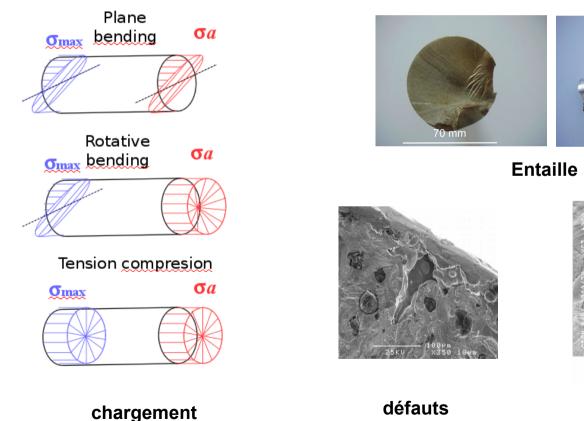
- I. Notion de critère de fatigue multiaxiale
- II. Quelques notations et définitions
- III. Différentes familles de critères de résistance à la fatigue
- √ IV. Critères non locaux
 - Pourquoi ?
 - Différents types et exemples
 - V. Calcul de durée de vie sous chargements d'amplitude variable Conclusion

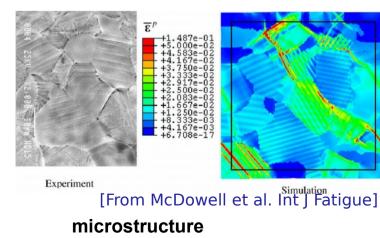
III. Critères non locaux

Pourquoi ?

Pour prendre en compte l'effet des GRADIENTS de contraintes et déformations sur la résistance en fatigue des pièces

Des gradients à différentes échelles...





70 mm

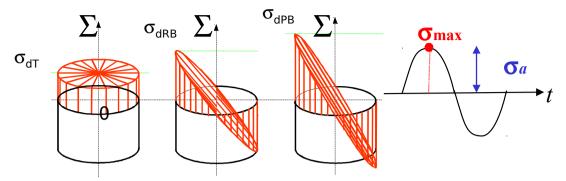
III. Critères non locaux

Pourquoi ?

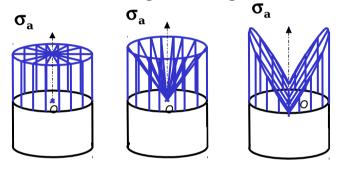
Effet des gradients de contraintes

Du au mode de chargement

$$\sigma_{D \text{ Trac}} < \sigma_{D \text{ Flex. Rot.}} < \sigma_{D \text{ flex. Pl.}}$$



Tension Rotating Bending Plane Bending



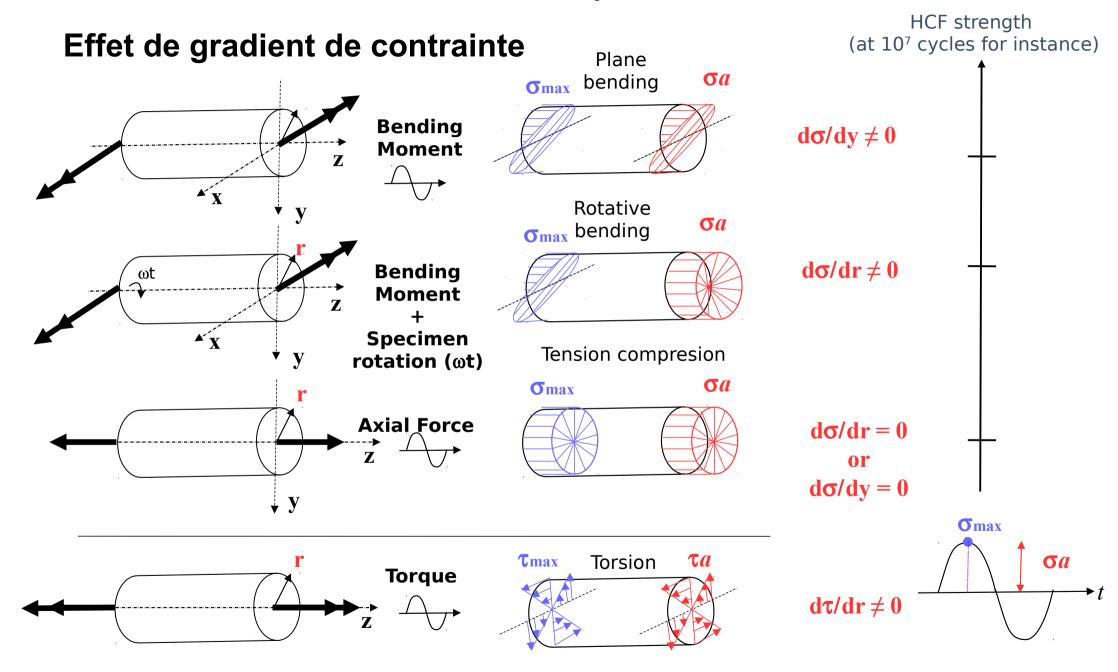
Fatigue limit ratios	Ti-6Al- 4V	35NiCrMo4	30NiCrMo16	C20	EN-GJS800-2	34CrNiMo6	C35
Rot Bend / Ten	1.03	1.04	1.17	1.14	1.14	-	1.14
Pl. Bend / Ten	1.12	1.11	1.23	1.22	1.20	-	-
Pl. Bend / Rot Bend	1.08	1.07	1.05	1.07	1.05	1.11	-

T. Delahay, T. Palin-Luc (2006) International Journal of Fatigue, 28: 474-484

L. Flacelière, F. Morel (2004) Fatigue Fract Engng Mater Struct, 27: 1123-1135

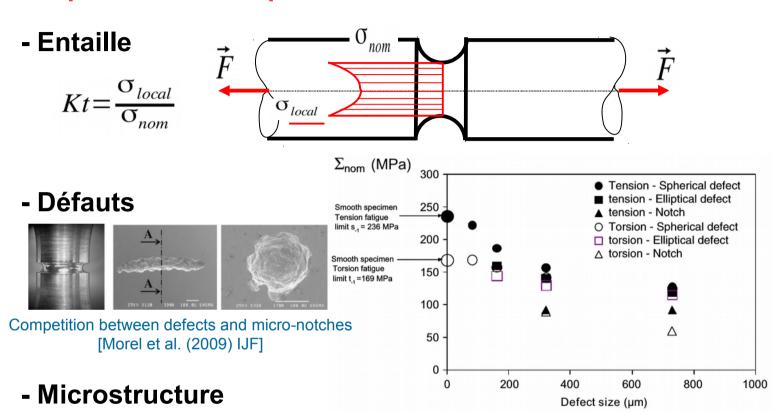
III. Critères non locaux

Pourquoi ?



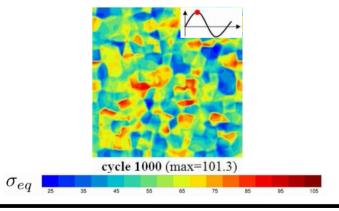
Pourquoi ?

Pour prendre en compte l'effet des GRADIENTS de contraintes et déformations



FEA on Pure Copper Cubic elasticity + Polycristal plasticity Equiaxed grains, Isotropic texture 2D or 3D model

[Saintier et al. 2015, Ital. Group Fracture] [Hor, Saintier, Morel et al. 2014, Int J Fatigue]

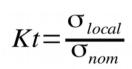


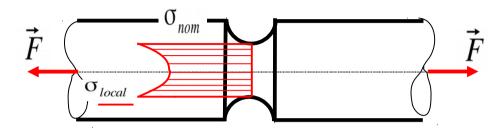
[Mc Dowell et al. 2010, Int J Fatigue] [Pryzbyla et al. 2010, Int J Fatigue]

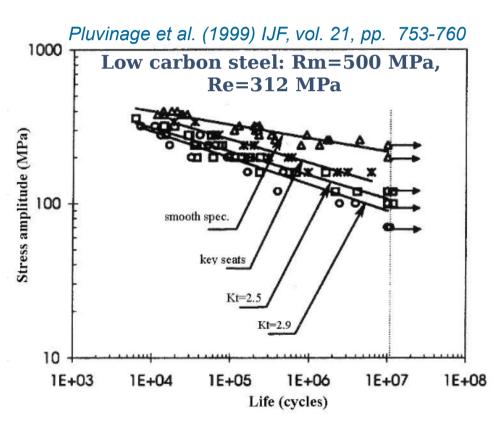
• Pourquoi ?

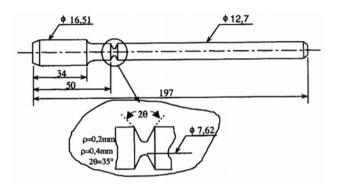
Pour prendre en compte l'effet des GRADIENTS de contraintes et déformations

- Entaille



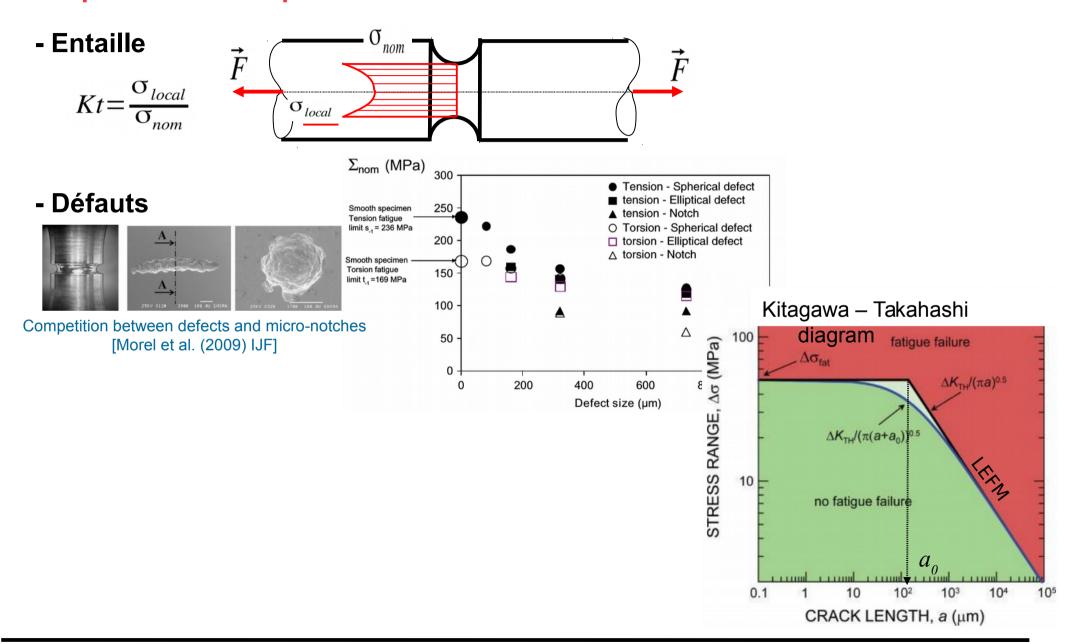






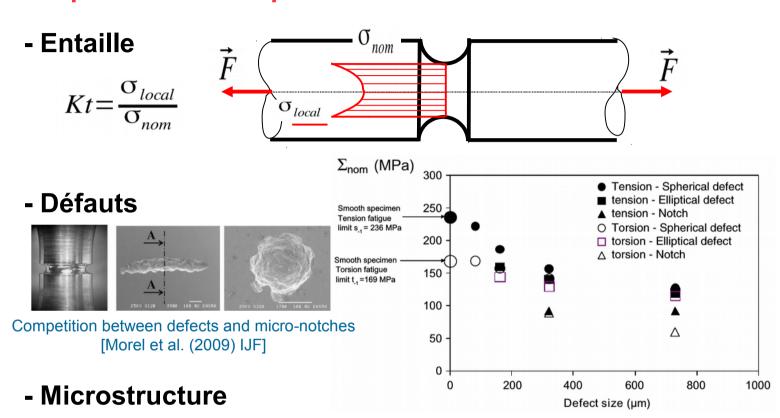
• Pourquoi?

Pour prendre en compte l'effet des GRADIENTS de contraintes et déformations



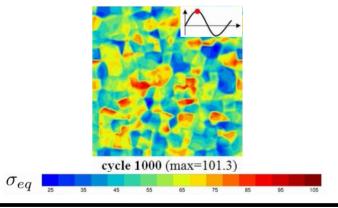
Pourquoi ?

Pour prendre en compte l'effet des GRADIENTS de contraintes et déformations



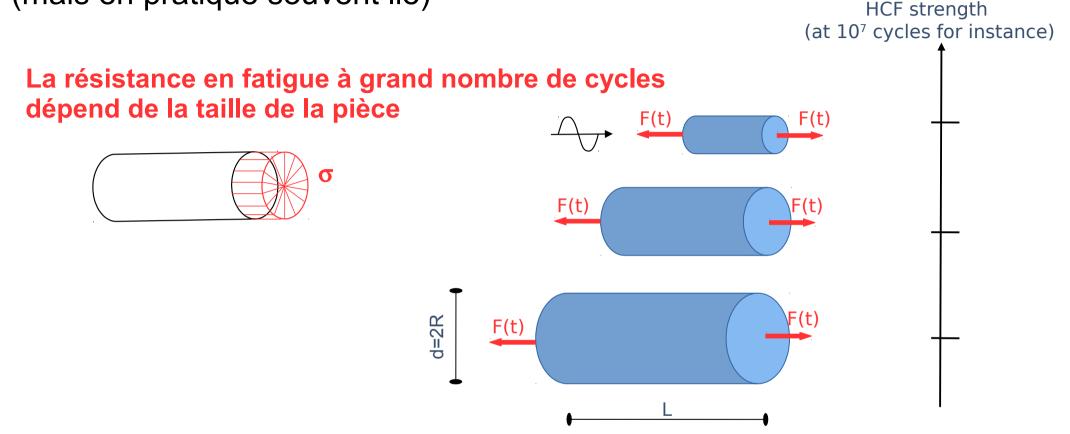
FEA on Pure Copper Cubic elasticity + Polycristal plasticity Equiaxed grains, Isotropic texture 2D or 3D model

[Saintier et al. 2015, Ital. Group Fracture] [Hor, Saintier, Morel et al. 2014, Int J Fatigue]



[Mc Dowell et al. 2010, Int J Fatigue] [Pryzbyla et al. 2010, Int J Fatigue]

Autre effet à séparer de l'effet de gradient : l'effet d'échelle (mais en pratique souvent lié)



Eprouvette cylindrique de dimensions diverses (R and L) sans entaille sous chargement axial

→ distribution de contrainte homogène & different volumes sollicités

Ceci n'est pas abordé dans ce cours

Voir approches probabilistes (cf. présence de défauts), F Hild

Pourquoi ?

Synthèse

- Mode de chargement → Gradient de contraintes → Augmente la résistance en fatigue à grand nombre de cycles (FGNC)
- Effet d'échelle → la résistance FGNC
- Effets opposés

Mais

- Entailles
- Défauts du matériau

... peuvent fortement modifier ses tendances

Différents types

→ Approches avec moyennes 0D, 1D, 2D, 3D

→ Gradient mathématique des contraintes en 1D ou 3D

Différents types

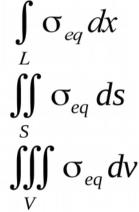
→ Approches avec moyennes 0D, 1D, 2D, 3D

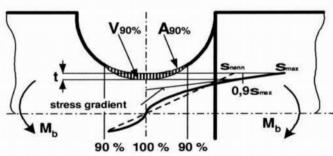
• 0D: Méthode du point ou distance critique

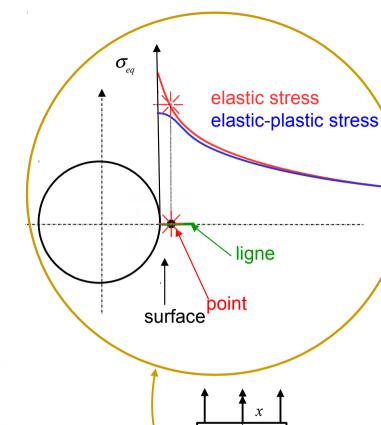
• 1D: moyenne sur une ligne

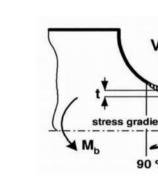
• 2D: moy. sur une surface

• 3D: moy. sur un volume



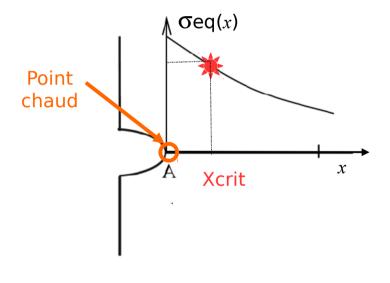






✓ Method 0D: distance critique Neuber (1958), R.E. Peterson (1959), J-F. Flavenot and N. Skally (1983), Taylor (1999)...

Concept: appliquer un critère de fatigue multiaxiale à <u>une distance critique</u> du fond d'entaille



- Exemple distance critique de Flavenot et al. avec le crotère de Dang Van :

$$\sigma_{eq,DV} = \max_{n} \left\{ \max_{t \in T} \left[\left\| \tau'(n,t) \right\| + a \sigma_{H}(t) \right] \right\} \le b$$

Mais tout **n'importe quel autre critere** peut être utilisé:

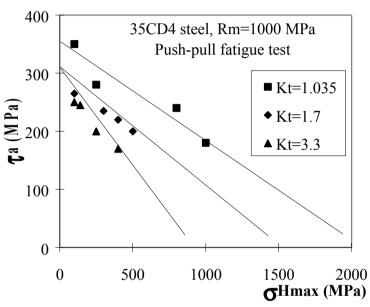
- Crossland:
$$\sigma_{eq,Cr} = \tau_{oct,a,\Delta J_2} + a \sigma_{H,max} \leq b$$

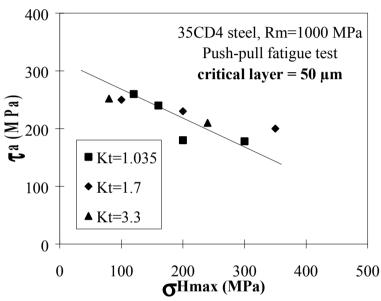
- Matake:
$$\sigma_{eq,Ma} = C_a(\theta^*, \varphi^*) + a N_{\max}(\theta^*, \varphi^*) \le b$$
 $(\theta^*, \varphi^*) = \max_{\theta, \varphi} \{C_a(\theta, \varphi)\}$

- Fatemi-Socie:
$$\sigma_{eq,FS} = \frac{\Delta \gamma}{2} \left(1 + k \frac{\sigma_{n,\max}(\theta^*, \phi^*)}{\sigma_y} \right) \leq b \qquad {\theta^*, \phi^*} = \max_{\theta, \phi} \{\Delta \gamma(\theta, \phi)\}$$
 etc.

Nota : calculer le vrai champ de contraintes élasto-plastique peut être évité

- ✓ Method 0D: distance critique
- Exemple: Distance critique de Flavenot et al. (1983):





#The depth of the critical layer is material dependent and fitted on experimental fatigue data For instance for Flavenot and Skally

- → bonne estimation de l'effet de gradient du à l'entaille
- → mais le type de chargement n'est pas pris en compte
- → le lien avec la microstructure n'est pas si clair

√ Méthodes 1D ou 2D

Principe: moyenner un critère de fatigue sur :

- une ligne (1D)

$$\Delta \sigma_{eff} = \frac{1}{d_0} \int_0^{d_0} \Delta \sigma_I(l) \ dl$$

- une **surface** (2D)

à fond d'entaille
$$\Delta \sigma_{eff} = \frac{4}{\pi d_0} \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{d_0} \Delta \sigma_I(l,\theta) l dl d\theta$$

$$d_0 = \frac{1}{\pi} \left(\frac{\Delta K_{th}}{\Delta \sigma_D} \right)^2$$

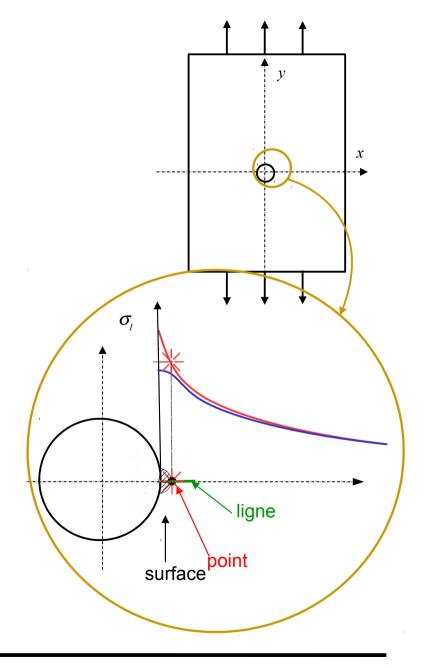
D. Taylor (1999)

Susmel (2001, 2004)

ou

Distance effective

Pluvinage et al (1999)



✓ 2D : moyenne sur une <u>surface</u>

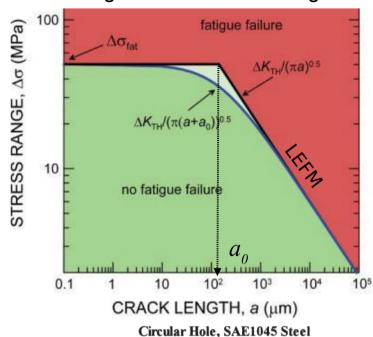
$$d_0 = \frac{1}{\pi} \left(\frac{\Delta K_{th}}{\Delta \sigma_D} \right)^2$$

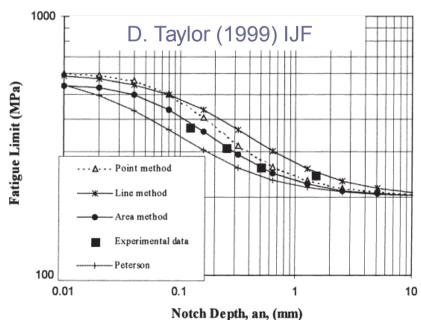
- → Approche « défaut = fissure »
- → Lien avec la mechanique de la rupture et les travaux de El Haddad

$$d_o = a_o \qquad \Delta K_{th} = \Delta \sigma \sqrt{\pi (a + a_0)}$$

- → Prévision du diagramme de Kitagawa Takahashi
- → Definition claire de le distance critique d0
- → Bonne estimation de l'effet de gardient du à l'entaille
- → Mais effet du mode de chargement (gradient) difficile à prendre en compte

Kitagawa – Takahashi diagram





Methodes 3D: moyenne sur un volume

Concept: **moyenner** un critère de fatigue multiaxiale **dans un volume** situé à fond d'entaille ou au fond du défauts ou au point le plus chargé

Plusieurs définitions du "volume chargé" ou "volume critique":

Methodes 3D: moyenne sur un volume

Concept: **moyenner** un critère de fatigue multiaxiale **dans un volume** situé à fond d'entaille ou au fond du défauts ou au point le plus chargé

Plusieurs définitions du "volume chargé" ou "volume critique":

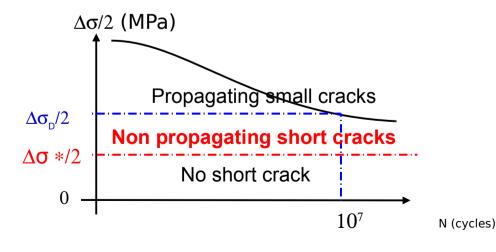
• **V90%**: où la contrainte de Von Mises, $\sigma_{\rm eq,VM} > 0.90 \times \max[\sigma_{\rm eq,VM}]$

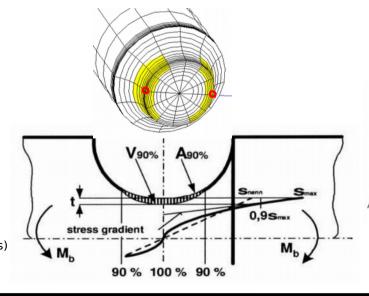
[Sonsino 1997]

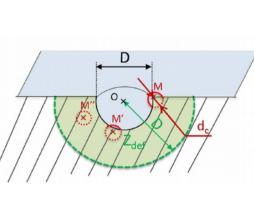
• V^* : délimité par les points sollicités au dessus d'un seuil, $\Delta \sigma^*/2$, propre au matériau et inférieur à la limite de fatigue [Palin-Luc et al. 1996 - 2013]

• Sphère de rayon = distance critique

[El May et al. 2015]







- Gradient de contrainte mathématique

radient de contrainte mathématique

• 1D

- CETIM "Méthode du gradient"

$$\chi = \lim_{x \to 0} \left(\frac{1}{\sigma(x)} \frac{d \sigma(x)}{dx} \right)$$
 $\chi = \lim_{x \to 0} \left(\frac{1}{\sigma(x)} \frac{d \sigma(x)}{dx} \right)$

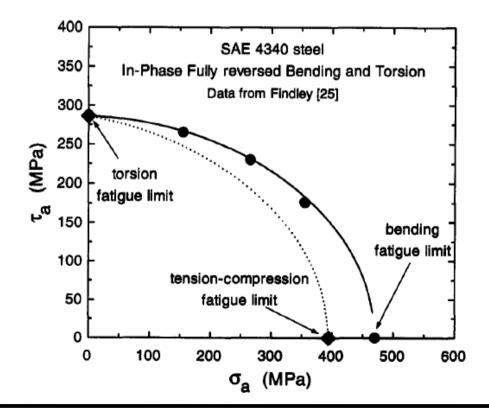
 σ_{max}

- "DSG approach" par Nadot et al. (Billaudeau, Gadouini):

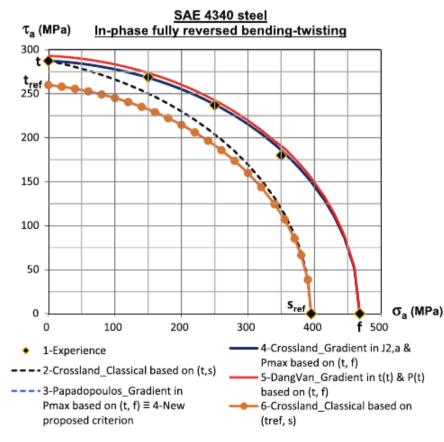
- Gradient de contrainte mathématique
 - 3D

Papadopoulos and Panoskaltsis (1996)

$$\sqrt{\Delta J_{2,a}} + \alpha \sigma_{H, \max} \left(1 - \beta \times \left\langle \frac{G(\sigma_{H, \max})}{\sigma_{H, \max}} \right\rangle \right) \leq b$$



$$G(\sigma_{H,max}) = \sqrt{\left(\frac{\partial \sigma_{H,max}}{\partial x}\right)^2 + \left(\frac{\partial \sigma_{H,max}}{\partial y}\right)^2 + \left(\frac{\partial \sigma_{H,max}}{\partial z}\right)^2}$$



Luu and Maitournam (2015) IJF

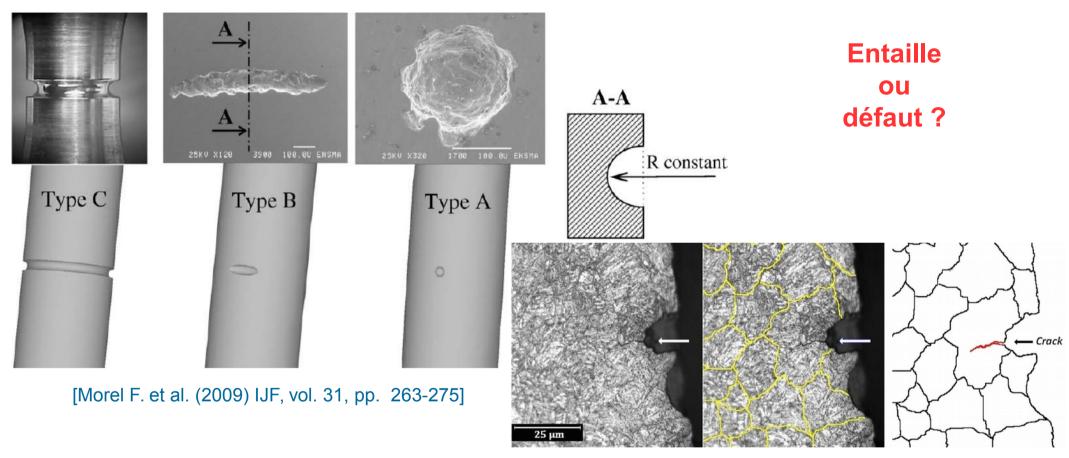
Synthèse

- Manque de travaux de synthèse sur tous les critères non locaux publiés
- Cependant:
 - Toutes les méthodes donnent de bons résultats dans la biblio
 - Mais: definir la Distance, la Surface ou le Volume n'est pas toujours si simple ou justifié physiquement (quel lien avec la microstructure?)
 - Méthodes 2D difficile à appliquer à des pièces réelles (choix de la surface ou direction de moyennation)
 - 3D nécessité de calcul éléments fins
 - ET pour toutes les méthodes le modèle de comportement cyclique du matériau est fondamental

Certaines méthodes non-locales ont été proposées pour éviter les calculs élasto-plastiques...

✓ En réalité

• Compétition entre gradients de contraintes déformations macro & meso



Crack from a corrosion pit, comparison with grain size [Perez-Mora R. et al.(2015) IJF, vol. 74: 156–165]

- Entaille → gradient à l'échelle MACRO
- Défaut → gradient à l'échelle méso (microstructure)

✓ En réalité

• Résultats récents utilisant des calculs EF en plasticité polycristalline

KEY microstructural factors:

- size and shape of the grains,
- crystallographic orientation of the grains,
- elastic anisotropy of the material,
- grain location (free surface, core),
- Grain orientation configurations and combinations of orientations (including hard-soft grain orientations) or "microtexture",
- Grain or phase boundaries
- PSBs

[McDowell and Dune 2010, IJF] [Pryzbyla and McDowell 2011, IJF] $D_c = 35 \mu \text{m}$ $100^{D_c} = 130 \mu \text{m}$ $1000^{D_c} = 1000^{D_c}$ 1000^{D_c} 1000^{D_c}

C45 steel

1000

100

Σ_{ija} [MPa]

- ✓ Finite Element Analysis and modeling
- ✓ Constitutive material models at the grain scale
- ✓ Local stress and strain fields

[Guerchais, Robert, Morel Saintier, Int J Fatigue (2014), vol. 59: 64–75] [Guerchais, Saintier, Morel, Robert, Int J Fatigue (2014), vol. 67: 159-172]

Kitagawa – Takashi diag.

Push-Pull Torsion

 $\Sigma_{11} \propto D^{-1/6}$

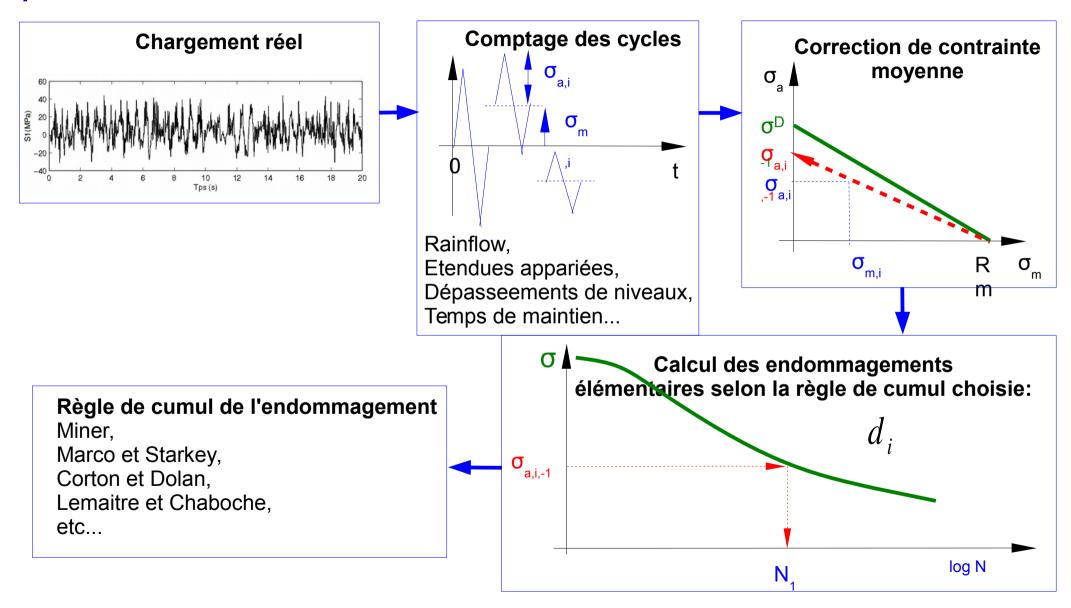
Voir exposé de N. Saintier mardi

Introduction

- I. Notion de critère de fatigue multiaxiale
- II. Quelques notations et définitions
- III. Différentes familles de critères de résistance à la fatigue
- IV. Critères non locaux
- ✓ IV. Calcul de durée de vie sous chargements d'amplitude variable
 - Méthodologie
 - Vers des méthodes incrémentales

Conclusion

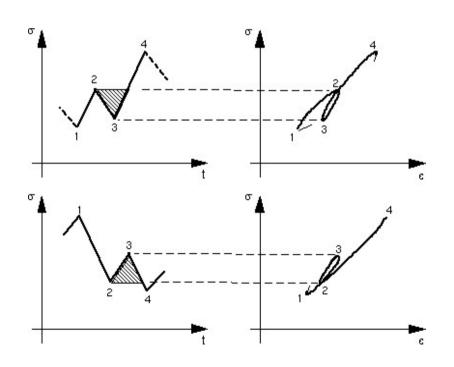
Méthodologie classique d'un calcul de durée de vie pour un état de contrainte uniaxial

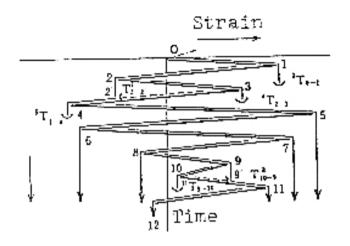


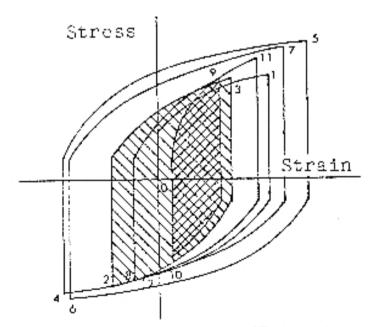
Méthodologie

Le comptage "RAINFLOW"

But : transformer l'évolution "aléatoire" d'une contrainte ou d'une déformation en un ensemble de cycles.



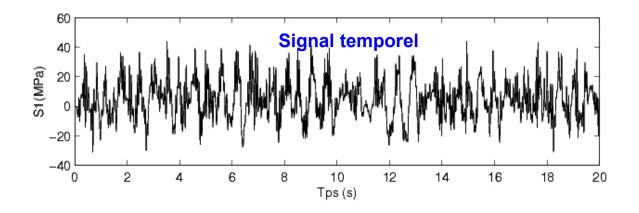


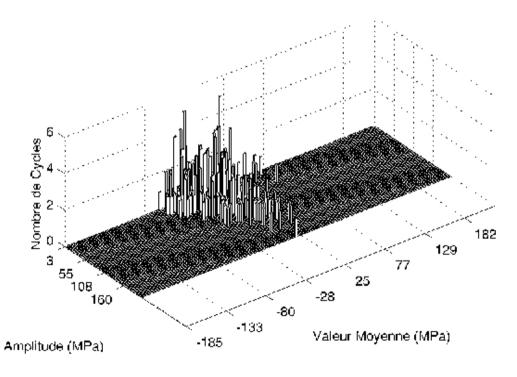


[Endo et al., 1974]

[NF A 03-406, Fatigue sous sollicitations d'amplitude variable. Méthode Rainflow de comptage, 1993]

Méthodologie





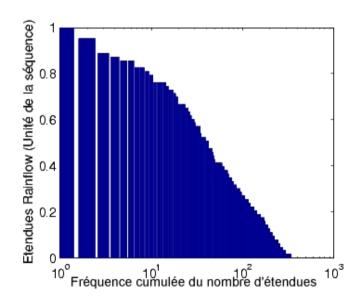


Illustration de la matrice résultant du comptage "Rainflow" : 327 cycles extraits

- Vers des méthodes incrémentales
- ✓ Inconvénients de la méthodologie classique :
 - Applicable aux états de contraintes multiaxiaux si choix a priori d'une variable de comptage des cycles.....LAQUELLE?
 - Comment cumuler l'endommagement selon la variable de comptable choisie ?
- ✓ Autre possibilité : Méthodes incrémentales
 - Ne pas compter des cycles mais cumuler temporellement une variable d'endommagement
 - Papadopoulos (1993) : déformation plastique mésoscopique
 - Morel (2000) : déformation plastique mésoscopique
 - Saintier et Palin-Luc (2013) : travail de déformation fourni au dessus d'un seuil propre au matériau

Conclusion

- ✓ De **multiples approches** existent pour prévoir la résistance à la fatigue des pièces métallique sous chargements multixiaux :
 - Invariants ; contraintes (plan critique) ; énergie (plan critique ou globale)
 - Bons résultats sous chargements proportionnels
 - Résultats passables sous chargements NON proportionnels
- ✓ Effets non négligeables des gradients dus à plusieurs phénomènes en compétition
 - Au chargement ; À la géométrie locale (entaille) ; Aux défauts À la microstructure
 - D'où des approches non locales
 - ⇒ Il existe aussi bien d'autres effets non abordés ici :
 - Dus au procédé de fabrication ou d'élaboration du matériau : état de surface, contraintes résiduelles, texture, etc...
 - Et à l'environnement, la température, la fréquence de chargement, etc.

Merci de votre attention

