Aussois 2019 - 21-25 jan. 2019 - Rupture des Matériaux et des Structures - Mécanismes et modélisations face aux applications industrielles

Caractérisation et quantification des mécanismes de rupture par imagerie

E. Maire, MatéIS INSA Lyon +... CNRS - INSA de LYON – Université de LYON

acceStructur

21-25 Janvier **201**9

Plan

- тз Introduction, cadre du cours
- T10 Classification
 - Méthodes expérimentales de mesure
 - Imagerie 2D puis Imagerie 3D
- T46 Essais de traction in situ en tomographie RX
 - Endommagement ductile
 - Routine
 - Quantification amorçage
 - Croissance
 - Coalescence
 - Tracking de cavités
 - Haute résolution, grande vitesse, lamino
 - T98 Autres exemples (composites, matériaux architecturés)

APPROCHE « MATERIAUX »

- Essais de laboratoire
- Aspects Microscopiques
- Evolution ?

Idée : connaissant la microstructure de départ + les mécanismes + l'évolution Peut on prédire la rupture ?

Fig. 1.1 Classification of fracture mechanisms. (After M. F. Ashby, Prog. Mat. Sci.; Chalmers Anniversary Volume, pp. 1-25 (1981).)

Observations anciennes : Influence du taux d'inclusions sur la ductilité (en traction)

Cuivre

Fig. 4.1 Ductility in tension versus volume fraction of second phases/inclusions for various copper alloys. (After Edelson, B. I., Baldwin, W. M., Trans. ASM, 55, American Society for Metals, Metals Park, OH 44073, 1962, pgs. 230–250.)

Acier

Fig. 4.2 Effect of total volume fraction of second phase particles on the tensile ductility of steel. (After F. B. Pickering, *Physical Metallurgy and the Design of Steels*, 1978, with permission from Elsevier Applied Science Publishers Ltd.)

Rupture/endommagement

- La rupture macroscopique est précédée par l'apparition d'endommagement microscopique
- Définition : création de surface au sein du matériau
- Cet endommagement
 - modifie le comportement
 - crée des amorces de rupture

Nomenclature

- Physique :
 - *f* fraction de cavités dans le matériau
 - *N* densité de cavités (/mm³)
 - $-\omega$ proportion de particules cassées
 - *R* rayon des cavités formées
- Mécanique
 - $-\sigma, \varepsilon$ contrainte et déformation
 - *E* module d'Young (σ =*E* ε)
 - -D paramètre d'endommagement $E=(1-D)E_{o}$
 - *T* Triaxialité des contraintes

Classification des méthodes de mesure du microendommagement

Mesure expérimentale de l'endommagement

- Méthodes indirectes
 - Densité
 - Modules
 - Acoustiques
 - Résistivité

- Méthodes directes
 - Imagerie en surface
 - sur surface polie
 - fractographie
 - Imagerie proche de la surface (SAM)
 - Imagerie en volume (radio et tomographie)
 - RMN
 - Rayons X
 - Neutrons
 - In situ / ex situ
 - Traitement et analyse des images

Méthodes indirectes

- Mesure d'une *grandeur* physique ou mécanique dont la variation traduit la variation de l'endommagement
- Densité, Modules, Mesures acoustiques, Résistivité
- Suppose une connaissance de la relation entre la *grandeur* et *f* (ou *D*)
- Paramètre scalaire ou parfois tensoriel

Densité

Fig. 4. Normalized elastic modulus (E_{pl}/E_i) ; (a) comparing the 20 vol. % composite and unreinforced alloy; (b) comparing the 20 vol. % composite in the T61 and OA300 conditions.

Vitesse ultra-sonore

Vieillissement dans de l'eau à 70° C

Résistance électrique

- Acier
- Evolution de l'endommagement en fatigue
- Comparaison des mesures de résistance électrique avec des mesures du type : rupture monotone d'échantillons fatigués (by ductility)

Fig. 2. Damage measurement for 45C steel by electrical resistance change and static ductility.

Bilan

- Pratique
- Pas cher
- Efficace
- Mais
 - Aucune de ces méthodes ne distingue
 - Amorçage
 - Croissance
 - Coalescence

Méthodes directes

- Imageries
- Modes :
 - Surface
 - Optique
 - Electronique (MEB)
 - AFM, EBSD,...
 - Surface polie / faciès de rupture
 - Sous la surface, microscope acoustique à balayage (MAB)

- Volume
 - Radio et tomographie
 - Des rayons X
 - Des neutrons
 - RMN pour les éléments légers
- Dans tous les cas :
 - in situ / ex situ
 - qualitatif/quantitatif

Surface

MEB, MO, AFM

Nécessité de propreté : - surfaces polies - fractographie

Fractographie

Traction in situ :

Fractographie :

Au MEB

Imagerie de surfaces polies Etats déformés

• Rupture des inclusions

• Décohésion

• Ruptures matricielles

Limites

- Tout à fait valable (et encore très utilisé)
- A permis d'apprécier qualitativement les mécanismes
- A montré que l'amorçage avait lieu sur des micro-hétérogénéités
- A permis selon le cas de définir le type d'amorçage : décohésion, rupture, fissures matricielles, les trois...
- A permis de visualiser la phase de croissance
- Mais...
 - Semi quantitatif (évident en cas de striction)
 - Inclusion en surface <> en volume

Imagerie en volume

Dispositifs automatiques commerciaux • Polissage + microscope optique

Fig. 5. 3D reconstruction of Si (purple) + aluminides (green) structure of AlSi12Ni alloy by LOT in (a) AC composed by 0.5 μ m slices in a volume with $X = 51.75 \mu$ m, $Y = 48.80 \mu$ m and $Z = 14.50 \mu$ m; (b) ST of 0.6 μ m slices in a volume with $X = 51.75 \mu$ m, $Y = 48.80 \mu$ m and $Z = 16.50 \mu$ m conditions.

Fig. 8. Largest particle of Ni aluminides (green) + Si (purple) in ST condition reconstructed from the same sXCT volume as shown in Fig. 7 demonstrating the interpenetration of the two phases.

Zircone stabilisée à l'ytrium

Reconstruction and smoothing by Sukbin Lee Lee, Dillon, Rollett, Rohrer, *Microscopy and Microanalysis* 2007

 28_{53}

Dissolution sélective

Enlever des couches (polir) à l'échelle **atomique** Microscopie ionique

Polissage ionique : Sonde Atomique Tomographique

Bilan

- Une vue 3D de l'intérieur de l'échantillon
- A différentes échelles (y compris atomique)
- Mais
 - Destructif
 - Ne permet pas de suivre une évolution sous chargement

Imagerie 3D non destructive

Radiation qui pénètre, interagit et ressort en quantité suffisante

Méthodes NON DESTRUCTIVES (permettent les suivis in situ)

Techniques en Transmission / Rotation

Tomographie par projection/rotation (+reconstruction)

Combine l'information de PLUSIEURS radiographies pour reconstruire la carte 3D de la valeur de μ

Vue du dessus :

En radio, on mesure l'intégrale de μ Ce qu'on souhaite c'est recalculer la valeur de μ le long du trajet
Tomographie par projection/rotation (+reconstruction)

Combine l'information de PLUSIEURS radiographies pour reconstruire la carte 3D de la valeur de μ

Vue du dessus :

En radio, on mesure l'intégrale de μ Ce qu'on souhaite c'est recalculer la valeur de μ le long du trajet

Tomographie par projection/rotation (+reconstruction)

Combine l'information de PLUSIEURS radiographies pour reconstruire la carte 3D de la valeur de μ

Vue du dessus :

Il y a une étape informatisée (reconstruction)

Sinogram

Reconstruct

The result is a 2D map of μ

39

Avec des électrons

- Microscopie électronique en transmission
- Quelques problèmes :
 - Absorption
 - Il faut des échantillons minces
 - Diffraction
 - On peut utiliser l'HAA
 - Ou l'imagerie en perte d'énergie (EELS)
 - Angles qui manquent
- Cf P. Midgeley, T. Epicier

Neutrons

- Pénètre, interagit, peu absorbé
- Diffraction
- Imagerie : radio/tomo
- Mais faible flux des sources
- Basse résolution, mauvais détecteurs
- Très utile pour les matériaux très absorbants

Fig. 6. Section of soot filter from diesel engine.

Imagerie aux rayons X

- Limité en termes de résolution (moins bien que le MEB... 10 nm actuellement)
- Mais on peut traverser des échantillons épais
 - Transmission à travers des échantillons opaques

- Accès à de l'information profenant du volume du matériau
- Intéressant particulièrement pour :
 - L'étude de l'endommagement (effets de surface)
 - Les matériaux à microstructure complexe (mousses, laines, etc)...

In Situ / Ex situ

- In situ : observation en même temps que sollicitation
 - Nécessite des machines spéciales
 - MEB in situ
 - Tomographie in situ (rotation de 180° sans masquer le faisceau)
 - Idéal pour interprêter
 - Mais échantillons petits ...
- Ex situ :
 - Le même échantillon (en surface)
 - En volume : destructif : différents échantillons

Plusieurs façon d'étudier l'effet d'une sollicitation Quelle que soit la méthode d'observation

Résultat d'un test de traction in situ

Essais in situ en tomographie RX

Un tomographe

Une machine de sollicitation

Tension, compression

Buffière et al. Acta Mater 1998

(5)

683

(a)

(C)

•Stepping motor •Reductor •F and disp recorded •10⁻⁵ – 1 mm/s •Several Force sensors : 50 – 5000 N •Grips adapted for different geometries

Ou plusieurs

Systèmes matrice molle Exemple qualitatif : AI + 4% ZS

Mode d'amorçage préférentiel : DECOHESION par TRACTION

Systèmes matrice dure exemple qualitatif : Al2124(T6) + 4%ZS

Mode d'amorçage préférentiel : RUPTURE particules mode l

Weck *et al* sur la coalescence

Trous controlés :

Film carrés 0 ° Film aléatoire

Quantification de l'endommagement ductile

A mesurer pour l'endommagement • Mesure de f :

Mesures directes sur images 2D, voire 1D ou 0D

 $- f_{0D} = f_{1D} = f_{2D} = f_{3D}$

– A condition que le nombre d'échantillons soit grand

- N
- Taille, forme
 - Si forme simple (disque, ellipse)
 - Taille 3D = A * Taille 2D [A=f(forme), sphère : $4/\pi$]
 - Si forme complexe (coalescence) il faut l'info 3D 54

Materials Steels, Ti and Al Alloys

Acta Materialia 61 (2013) 6821-6829

Experimental investigation of void coalescence in a dual phase steel using X-ray tomography

C. Landron^{a,b,1}, O. Bouaziz^{c,d}, E. Maire^{a,b,*}, J. Adrien^{a,b}

Engineering Fracture Mechanics 78 (2011) 2679–2690 Damage quantification in aluminium alloys using in situ tensile tests in X-ray tomography

Eric Maire^{a,*}, Suxia Zhou^b, Jerome Adrien^b, Marco Dimichiel^c

AI Alloys

Confidential

12/02/2019

Deux choses : chgt de forme + endo

Quelques mesures macroscopiques préalables

T = Bridgeman: $T = \frac{1}{3} + \sqrt{2} \ln \left(1 + \frac{r_{\text{Section}}}{2R_{\text{Notch}}} \right)$

Mesure des courbes de traction

12/02/2019

Confidential

60/~24

Triaxialité

True strain

Triaxiality

Material	Notch radius (mm)	σ ₀ (MPa)	n	Strain to failure	Τ _ο	S _t	
5754	smooth	370	0.15	0.95	0.33	0.1	
	1	500		0.55	0.44		
2024	smooth	730	0.1	0.3	0.33		
	2.5	750		0.31	0.37		
	1	840		0.3	0.44		
7449	smooth	860	0.06	0.3	0.33		
	2.5	900		0.22	0.37		
	1	980		0.19	0.44		
$\sigma = \sigma_0 A \varepsilon^n$				Т	$=T_0 s_t \varepsilon$		

Compter N (mm³)

Experimental methods

Quantification de l'amorçage

 \mathcal{E}_{loc}

Quantification de l'amorçage

Utilisé pour alimenter des critères Beremin

Experimental methods

Conclusions & Perspectives

Croissance (quantification)

Très difficile de suivre les cavités

Hypothèse : les plus grosses sont toujours les mêmes

Void growth model identification

Growth of isolated and spherical voids in a perfectly plastic matrix [*Rice and Tracey J. Mech. Phys. Sol. 1969*]

$$\frac{dR}{R} = \alpha_{RT} \exp\left(\frac{3}{2}T\right) d \varepsilon$$

Later revisited by Huang to better take *T* into account [Huang J. Appl. Mech. 1991]

$$\frac{dR}{R} = \alpha_{Huang} T^{0.25} \exp\left(\frac{3}{2}T\right) d\varepsilon \text{ for } T \le 1$$
$$\frac{dR}{R} = \alpha_{Huang} \exp\left(\frac{3}{2}T\right) d\varepsilon \text{ for } T > 1$$
$$\alpha_{Huang} = 0.427$$

Specimens	$\alpha_{_{RT}}$	$lpha_{ ext{Huang}}$
Smooth	0.47	0.55
R=2.5mm	0.50	0.55
R=1mm	0.52	0.55

Landron et al. Acta Mater. 2011

Modélisation croissance

Void growth modeling for AAlloys

Material	Notch·radius	Initiation · rate¶	α		
	(mm)¶	(x1000¶ /mm³/strain)¶	(Huang)¶	Steel samples	$lpha_{_{Huang}}$
5754¶	smooth¶	72¶	0.35¶	DP11	0.55
2024¶	1¶ smooth¶	166¶ 111¶	0.55¶	DP11T	0.45
2021	2.5¶	94¶	0.00 "	DP62	1.2
	1¶	69¶		Ferrite	0 22
7449¶	smooth¶	8¶	0.8¶	I CITIC	0.22
	2.5¶	30¶		Martensite	1.6
	1¶	55¶			

3. Observation of void coalescence (steels)

Macroscopic coalescence

1 Local events

Shear localization

Necking of the internal ligament

Local approach

- > Observation of dynamic coalescence
- Mainly because of the distribution of the distance between cavities

Thomason's criterion

W and χ calculated from the dimensions of the two cavities and from the distance between the two cavities

> Brown & Embury $\chi \sqrt{1+W^2}=1$

Thomason $\frac{\sigma_{ZZ}}{\sigma_y^{loc}} = (1 - \chi^2) \left[0.1 \left(\frac{1 - \chi}{\chi W} \right)^2 + 1.24 \frac{1}{\sqrt{\chi}} \right]$

Tracking de cavités

Heterogenous void growth revealed by in situ 3-D X-ray microtomography using automatic cavity tracking L. Lecarme^a, E. Maire^c, A. Kumar K.C.^b, C. De Vleeschouwer^b, L. Jacques^b, A. Simar^{a,*},

^a Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium ^b Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium ^c MATEIS UMR5510, INSA-Lyon, F-69621 Villeurbanne, France

T. Pardoen^{a,}

Received 20 July 2013; accepted 9 October 2013 Available online 13 November 2013

Tracking = linking detections based on positions and appearances

Amit Kumar K.C., and al., "Aggregation of Local Shortest Paths for Multiple Object Tracking with Noisy/Missing Appearance Features", Asian Conference on Computer Vision (ACCV), 2012.

Amit Kumar K.C. and C. De Vleeschouwer. Discriminative label propagation for multi-object tracking with sporadic appearance features, ICCV 2013.

Key results: tracking

TA6V

Mesure de la vitesse de croissance de chacune des cavités

78

Vitesse moyenne OK

Higher magnification ID22 (now 16B)

Key result

Un modèle pour tout intégrer de manière simple

Acta Materialia 103 (2016) 558-572

Contents lists available at ScienceDirect

Acta Materialia

journal homepage: www.elsevier.com/locate/actamat

Full length article

Characterization and micromechanical modelling of microstructural heterogeneity effects on ductile fracture of 6xxx aluminium alloys

Acta MATERIALIA

F. Hannard ^{a,*}, T. Pardoen ^a, E. Maire ^b, C. Le Bourlot ^b, R. Mokso ^c, A. Simar ^a

^a Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

b MATEIS UMR5510, INSA-Lyon, F-69621 Villeurbanne, France

^c Swiss Light Source, Paul Scherrer Institute, Villigen, 5232, Switzerland

Un modèle pour tout intégrer de manière simple

Synopsis du modèle

Sens long / sens travers

88

Full length article

Ductilization of aluminium alloy 6056 by friction stir processing

F. Hannard ^{a,*}, S. Castin ^a, E. Maire ^b, R. Mokso ^{c, d}, T. Pardoen ^a, A. Simar ^a

Laminographie

Available online at www.sciencedirect.com

ScienceDirect

Acta Materialia 69 (2014) 78-91

www.elsevier.com/locate/actamat

In situ 3-D observation of early strain localization during failure of thin Al alloy (2198) sheet

Thilo F. Morgeneyer^{a,*}, Thibault Taillandier-Thomas^{a,b}, Lukas Helfen^{c,d}, Tilo Baumbach^c, Ian Sinclair^e, Stéphane Roux^b, François Hild^b

^a Mines ParisTech, Centre des Matériaux, CNRS UMR 7633, BP 87, F-91003 Evry Cedex, France
^b LMT-Cachan, ENS Cachan/CNRS/PRES UniverSud Paris, 61 avenue du Président Wilson, F-94235 Cachan Cedex, France
^c ANKA/Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
^d European Synchrotron Radiation Facility (ESRF), BP 220, F-38043 Grenoble Cedex, France
^e µVIS X-ray Imaging Centre, Faculty of Engineering and the Environment, Southampton University, Southampton SO17 1BJ, UK

Received 3 September 2013; received in revised form 16 January 2014; accepted 17 January 2014 Available online 25 February 2014

э2

Autres exemples :

- Matériaux denses
 - Polymères (semi-cristallins, crazing...)exposé de Nicolas Saintier
 - Composites (Céramiques, polymères)
- Cellulaires architecturés
 - Mousses
 - Plâtre
 - Traction ou compression

RX et Matière 2015 - 95

> 20 Hz X-ray tomography during an in situ tensile test, E. Maire · C. Le Bourlot · J. Adrien · A. Mortensen · R. Mokso, IJF

RX et Matière 2015 - 97

Fig. 3. (a) Sub-volume containing a matrix crack; (b-c) detected matrix crack from two different angles of view.

Fig. 4. Reconstruction of a transverse slice in absorption contrast (first two distances) and holotomographic mode within a matrix crack.

▶ To cite this version:

A.E. Scott, M. Mavrogordato, P. Wright, I. Sinclair, S.M. Spearing. Fibre Fracture Measurement in Carbon-Epoxy Laminates using High Resolution Computed Tomography. Composites Science and Technology, Elsevier, 2011, 71 (12), pp.1471. <10.1016/j.compscitech.2011.06.004>. <hal-00786584>

Transverse Ply Cracks 0° Splits Delaminations

% of final failure load

Tomographe de laboratoire

 $\sigma_{eq}(MPs)$

1 mm

<u>1</u> う

Autres acteurs

- MatéIS : J Adrien, C Le Bourlot, S Dancette, X Boulnat, J Lachambre, JY Buffiere, C Landron
- O Bouaziz, F Hannard, A Simar, T Pardoen, T Balan, O Cazacu, T Morgeneyer, H Proudhon, A Bouterf, F Hild, S Roux, M Bornert, L3SR, SIMAP
- H Toda, P Withers, I Sinclair

 $\frac{10}{5}$

Mesure du paramètre d'endommagement *d* à partir des images

- Comment mesurer *D* à partir d'une image ?
- Mesure de f_{2D} (fraction surface) dans des sections perpendiculaires ?
 - Ne marche pas car *f* a toujours la même valeur (propriété stéréologique) – Donc il faut faire un calcul local de surface projetées S_{D} et S_{O} de $D = (S_D / S_0)$ pour chacun des trous Nécessite le calcul de la zone d'influence du pore

Zone d'influence

- Voronoï
- SKIZ

Gurson model ?

- Thuillier, Maire *et al*.
- Habrakem, Maire *et al*.
- Bouchard, Maire *et al*.
 - Cazacu, Maire *et al*.
 - Pardoen, Maire *et al*.