Damage and Fracture: Numerical Approaches at the Structure Scale

Eric Lorentz (EDF R&D)

SOME TARGET STRUCTURES AT EDF

OBJECTIVES

Characteristics

- Large structures
- Large crack propagation
- Various materials

Restricted framework

- Quasi-static tensile loading
- Scale of a single macroscopic crack

Quantities of interest

- Maximal load, potential instabilities
- Crack path, length and opening (tightness)

(Tate Modern, Londres)

Computation

- Robustness
- Reliability
- Performance

AVAILABLE MODELING TOOLS

Cohesive zone model (CZM) Fictitious crack model

Engineer parameters (σ_c , G_F) Crack modeling: opening, length, contact

Continuum Damage Mechanics (CDM) Smeared crack model

Damage threshold in the stress space Crack path description

OUTLINE

Cohesive Zone Models (CZM)

- Principle and basic finite elements
- Extrinsic and intrinsic laws Numerical consequences
- Interface mixed finite elements
- Instabilities and path-following methods
- Crack path prediction and related issues

Continuum Damage Mechanics (CDM)

- Strain-softening, localisation and constitutive nonlocality
- Nonlocal constitutive relations
- Gradient models: formulation and mixed finite elements
- Anisotropy vs isotropy and damage stiffness coupling
- Vanishing internal length and the cohesive limit

MY PHILOSOPHY REGARDING NUMERICAL STRATEGIES

1. Avoid damage computations if post-treatment criteria are applicable

- Energy release rate *G*, path integral *J*
- Rice and Tracey growth criterion

2. If you can guess potential crack paths, use Cohesive Zone Models

- No stiffness regularisation (extrinsic laws)
- Mixed finite elements along the crack path
- Path-following methods if instabilities are expected

3. Otherwise rely on Continuum Damage Mechanics

- Nonlocal constitutive laws (preferably gradient models)
- Refined mesh in the damaged areas
- High computational cost

Cohesive zone models

OUTLINE

Cohesive Zone Models (CZM)

- Principle and basic finite elements
- Extrinsic and intrinsic laws Numerical consequences
- Interface mixed finite elements
- Instabilities and path-following methods
- Crack path prediction and related issues

Continuum Damage Mechanics (CDM)

- Strain-softening, localisation and constitutive nonlocality
- Nonlocal constitutive relations
- Gradient models: formulation and mixed finite elements
- Anisotropy vs isotropy and damage stiffness coupling
- Vanishing internal length and the cohesive limit

COHESIVE FRACTURE: PRINCIPLE

ADHESION AND STRESS THRESHOLD

ENERGY FORMULATION AND BASIC FINITE ELEMENT

Energy minimisation *Pedagogic case*

Total energy

$$\mathcal{E}(\mathbf{u}, \boldsymbol{\delta}) \equiv \mathcal{E}_{fr}(\boldsymbol{\delta}) + \mathcal{E}_{el}(\mathbf{u}) - \mathcal{W}_{ext}(\mathbf{u})$$
$$\min_{\boldsymbol{\delta} = \llbracket \mathbf{u} \rrbracket} \mathcal{E}(\mathbf{u}, \boldsymbol{\delta})$$

Fracture energy and cohesive law

Basic spatial discretisation Cohesive crack between bulk elements

$$\mathbf{u}(\mathbf{x}) = \sum_{n} \mathbf{N}^{n}(\mathbf{x}) \mathbf{U}_{n}$$

$$\boldsymbol{\delta}(\mathbf{s}) = \llbracket \mathbf{u} \rrbracket(\mathbf{s}) = \sum_{n} \left[N^{n} \left(\mathbf{s}^{+} \right) - N^{n} \left(\mathbf{s}^{-} \right) \right] \mathbf{U}_{n}$$

11/64

OUTLINE

Cohesive Zone Models (CZM)

- Principle and basic finite elements
- Extrinsic and intrinsic laws Numerical consequences
- Interface mixed finite elements
- Instabilities and path-following methods
- Crack path prediction and related issues

Continuum Damage Mechanics (CDM)

- Strain-softening, localisation and constitutive nonlocality
- Nonlocal constitutive relations
- Gradient models: formulation and mixed finite elements
- Anisotropy vs isotropy and damage stiffness coupling
- Vanishing internal length and the cohesive limit

EXTRINSIC OR INTRINSIC LAWS: PENALTY REGULARISATION

Extrinsic and intrinsic cohesive laws

Energy interpretation (contact case)

PENALTY-INDUCED NUMERICAL DIFFICULTIES

Bad numerical conditioning

Choice of the penalty parameter *r* A trade-off between:

- 1. Accuracy (?)
- 2. Performance (and even robustness)

Ill-posed asymptotic problem

The asymptotic problem for $r \rightarrow \infty$ is ill-posed (LBB condition not fulfiled) $\downarrow\downarrow$ Spurious stress oscillations

OUTLINE

Cohesive Zone Models (CZM)

- Principle and basic finite elements
- Extrinsic and intrinsic laws Numerical consequences
- Interface mixed finite elements
- Instabilities and path-following methods
- Crack path prediction and related issues

Continuum Damage Mechanics (CDM)

- Strain-softening, localisation and constitutive nonlocality
- Nonlocal constitutive relations
- Gradient models: formulation and mixed finite elements
- Anisotropy vs isotropy and damage stiffness coupling
- Vanishing internal length and the cohesive limit

LAGRANGIAN RELAXATION

Objective

 $\min_{a} \left[R(a) + S(a) \right] \text{ where } S \text{ is a "troublesome function"}$

Steps

1. Decomposition $\min_{a=b} R(a) + S(b)$ 2. Augmentation $\min_{a=b} \left[R(a) + S(b) + \frac{r}{2}(a-b)^{2} \right]$ 3. Dualisation $\min_{a} \max_{\lambda} \min_{b} \left[R(a) + S(b) + \frac{r}{2}(a-b)^{2} + \lambda(a-b) \right]$

4. Discretisation collocation for $b \rightarrow$ pointwise elimination

Resulting in a mixed finite element (dof a and λ)

A MIXED FINITE ELEMENT FOR EXTRINSIC COHESIVE LAWS

Lagrangian relaxation

$$\mathcal{E}(\mathbf{u}, \boldsymbol{\delta}) \equiv \mathcal{E}_{fr}(\boldsymbol{\delta}) + \mathcal{E}_{el}(\mathbf{u}) - \mathcal{W}_{ext}(\mathbf{u})$$

$$\min_{\boldsymbol{\delta} = \llbracket \mathbf{u} \rrbracket} \mathcal{E}(\mathbf{u}, \boldsymbol{\delta}) \equiv \mathcal{E}(\mathbf{u}, \boldsymbol{\delta}) + \int_{\Gamma} \boldsymbol{\lambda} \cdot \left(\llbracket \mathbf{u} \rrbracket - \boldsymbol{\delta}\right) + \frac{r}{2} \int_{\Gamma} \left(\llbracket \mathbf{u} \rrbracket - \boldsymbol{\delta}\right)^{2}$$

$$\min_{\boldsymbol{u} = \lambda} \min_{\boldsymbol{\delta}} \mathcal{L}(\mathbf{u}, \boldsymbol{\delta}, \lambda)$$
global equilibrium constitutive relation

Spatial discretisation

Nodal Quadratic displacements u Nodal Linear cohesive forces λ Gauss points sampled displacement jump δ

3D SANDWICH BEAMS WITH PRESCRIBED CRACK PATH

Geometry and crack path

Loading and boundary conditions

DEFORMED SHAPE AND STRESS FIELD

Deformed shape and longitudinal stress

PROCESS ZONE PROPAGATION

adhesion

OUTLINE

Cohesive Zone Models (CZM)

- Principle and basic finite elements
- Extrinsic and intrinsic laws Numerical consequences
- Interface mixed finite elements
- Instabilities and path-following methods
- Crack path prediction and related issues

Continuum Damage Mechanics (CDM)

- Strain-softening, localisation and constitutive nonlocality
- Nonlocal constitutive relations
- Gradient models: formulation and mixed finite elements
- Anisotropy vs isotropy and damage stiffness coupling
- Vanishing internal length and the cohesive limit

EXEMPLE OF STRUCTURAL INSTABILITIES

ORIGIN OF THE INSTABILITIES

INSTABILITIES ALSO APPEAR WITH CDM

Physical and (questionable) numerical instabilities

PATH-FOLLOWING TECHNIQUE (ARC-LENGTH)

Idea : unknown load amplitude η

$$F_{int} (\Delta U) = t F_{ext}$$

$$\begin{cases} F_{int} (\Delta U) = \eta F_{ext} \\ P(\Delta U) = \Delta t \end{cases}$$

Role of the path-following function P

Propositions

- Norm of the displacement increment (arc-length)
- Displacement increment in a well-chosen area
- Dissipation increment
- Maximal increment of cohesive damage

 $\mathsf{P}(\Delta \mathsf{U}) = \max_{g \in \mathsf{Gauss}} \left[\Delta \delta_g \left(\Delta \mathsf{U} \right) \right]$

OUTLINE

Cohesive Zone Models (CZM)

- Principle and basic finite elements
- Extrinsic and intrinsic laws Numerical consequences
- Interface mixed finite elements
- Instabilities and path-following methods
- Crack path prediction and related issues

Continuum Damage Mechanics (CDM)

- Strain-softening, localisation and constitutive nonlocality
- Nonlocal constitutive relations
- Gradient models: formulation and mixed finite elements
- Anisotropy vs isotropy and damage stiffness coupling
- Vanishing internal length and the cohesive limit

COPING WITH DISCONTINUOUS DISPLACEMENT FIELDS

Mesh independent of Γ

Special finite elements

E-FEM Internal unknowns X-FEM nodal unknwowns

Γ along mesh faces

Mesh adaptivity

Remeshing

Moving nodes

Mesh quality ? Field projection ?

ISSUES WITH CRACK PATH PREDICTION

Following all element faces

- Extrinsic laws only
- Approximating a curve with fixed segments

Ensuring crack path continuity

- In order to compute the correct dissipation
- Difficult to ensure step by step 3D continuity

Local crack orientation criterion

- Based on possibly perturbated quantities
- Set earlier or at damage inception (fixed crack)
- What definition in 3D ?

Mesh dependency, Feyel (2005)

Jirasek & Zimmermann (2005)

ENERGETIC FORMULATION AND PHASE-FIELD REGULARISATION

Energetic formulation

$$\min_{\mathbf{u}} \left[\mathcal{E}_{fr}\left(\llbracket \mathbf{u} \rrbracket \right) + \mathcal{E}_{el}\left(\mathbf{u} \right) - \mathcal{W}_{ext}\left(\mathbf{u} \right) \right]$$

Phase-field regularisation (Griffith case)

SUMMARY – COHESIVE ZONE MODELS

Strong points

- Deal with initiation, propagation and ultimate failure
- Consistent with Fracture Mechanics
- Realistic crack description (length, opening, ...)
- Engineer parameters (peak stress, fracture energy)

Shortcomings

- Nonlinear and potentially unstable computations
- Mesh-refinement inside the cohesive zone
- 3D crack path prediction

Technical tools

- Mixed finite elements
- Path-following methods

Continuum Damage Mechanics

OUTLINE

Cohesive Zone Models (CZM)

- Principle and basic finite elements
- Extrinsic and intrinsic laws Numerical consequences
- Interface mixed finite elements
- Instabilities and path-following methods
- Crack path prediction and related issues

Continuum Damage Mechanics (CDM)

- Strain-softening, localisation and constitutive nonlocality
- Nonlocal constitutive relations
- Gradient models: formulation and mixed finite elements
- Anisotropy vs isotropy and damage stiffness coupling
- Vanishing internal length and the cohesive limit

WHY DAMAGE CONSTITUTIVE LAWS ARE NONLOCAL

Damage evolves in layers of small thickness

X100 pipeline steel NT, cavity growth (Besson, Morgeneyer)

Concrete SENB, acoustic emission energy Muralidhara et al. (2010)

Constitutive relations are nonlocal

- The scale of the damage pattern is comparable to the microstructure size
- The scale separation assumption (homogenisation) does not hold anymore
- A constitutive coupling between neighbour material points takes place

STRAIN-SOFTENING AND DAMAGE LOCALISATION

Strain-softening

The set of admissible stresses shrinks with increasing damage (and strain)

Localisation

Strain-softening and equilibrium enable damage (and strain) localisation

Damage band width

Nonlocality rules the localisation band width

DAMAGE SIMULATIONS WITHOUT NONLOCALITY

Spurious mesh-dependency

Ill-posed mathematical problem

Rate problem

$$\dot{\boldsymbol{\epsilon}} = \nabla^{s} \dot{\boldsymbol{u}}$$
; $\dot{\boldsymbol{\sigma}} = \boldsymbol{H} : \dot{\boldsymbol{\epsilon}}$; div $\dot{\boldsymbol{\sigma}} = \boldsymbol{0}$

Loss of ellipticity $\exists n \neq 0 \quad det(n \cdot H \cdot n) \leq 0$

CRACK PATH AND INTUITIVE MESHING

OUTLINE

Cohesive Zone Models (CZM)

- Principle and basic finite elements
- Extrinsic and intrinsic laws Numerical consequences
- Interface mixed finite elements
- Instabilities and path-following methods
- Crack path prediction and related issues

Continuum Damage Mechanics (CDM)

- Strain-softening, localisation and constitutive nonlocality
- Nonlocal constitutive relations
- Gradient models: formulation and mixed finite elements
- Anisotropy vs isotropy and damage stiffness coupling
- Vanishing internal length and the cohesive limit

INTRODUCING NONLOCALITY

Principle

• Stress and/or damage depend on what happens elsewhere

$$\boldsymbol{\sigma}(\mathbf{x}) = \mathcal{L}_{\sigma}(\boldsymbol{\epsilon}(\mathbf{y}), \boldsymbol{a}(\mathbf{y}); \ \mathbf{y} \in \Omega)$$

$$\dot{a}(\mathbf{x}) = \mathcal{L}_{a}(\mathbf{\epsilon}(\mathbf{y}), a(\mathbf{y}), \dot{\mathbf{\epsilon}}(\mathbf{y}); \mathbf{y} \in \Omega)$$

Internal length

- The influence decreases with distance
- Dimensional analysis : existence of one or several internal lengths *d*

CAN WE SAY THAT NONLOCAL = LOCAL + REGULARISATION ?

ENERGETIC APPROACH

State variables

Kinematics	u <i>,</i> ɛ(u)
Damage	а

Potential energy

$$\mathcal{E}(\mathbf{u},a) = \mathcal{F}(\mathbf{\epsilon},a) - \mathcal{W}_{ext}(\mathbf{u})$$

Minimisation principle

$\mathbf{u}^* = \operatorname*{argmin}_{\mathbf{u}\in\mathcal{C}} \mathcal{E}(\mathbf{u}, a^*)$

 $a^* = \operatorname*{argmin}_{a \in \mathcal{A}} \mathcal{E}(u^*, a)$

Stress definition and equilibrium

Damage evolution

NONLOCAL FORMULATIONS

R defined by an implicit gradient operator (least-square with gradient penalty)

QUALITATIVE ANALYSIS

OUTLINE

Cohesive Zone Models (CZM)

- Principle and basic finite elements
- Extrinsic and intrinsic laws Numerical consequences
- Interface mixed finite elements
- Instabilities and path-following methods
- Crack path prediction and related issues

Continuum Damage Mechanics (CDM)

- Strain-softening, localisation and constitutive nonlocality
- Nonlocal constitutive relations
- Gradient models: formulation and mixed finite elements
- Anisotropy vs isotropy and damage stiffness coupling
- Vanishing internal length and the cohesive limit

STRAIN GRADIENT MODEL AND MIXED FINITE ELEMENTS

Continuum

$$\mathcal{E}(\mathbf{u},a) \equiv \int_{\Omega} \Phi(\mathbf{\epsilon},a) + \frac{c}{2} \|\nabla \mathbf{\epsilon}\|^2 - \mathcal{W}_{ext}(\mathbf{u})$$

$$0 = \delta_{u} \mathcal{E} = \int_{\Omega} \left(\frac{\partial \Phi}{\partial \varepsilon} - c \nabla \cdot \nabla \varepsilon \right) : \delta \varepsilon - \delta \mathcal{W}_{ext} + bna$$
$$0 = \delta_{a} \mathcal{E} = \int_{\Omega} \frac{\partial \Phi}{\partial a} \delta a$$

Lagrangian relaxation and spatial discretisation

$$\mathcal{L}(\mathbf{u},a,\mathbf{e},\boldsymbol{\lambda}) = \int_{\Omega} \Phi(\boldsymbol{\varepsilon},a) + \frac{c}{2} \|\nabla \mathbf{e}\|^{2} + \boldsymbol{\lambda} : (\boldsymbol{\varepsilon} - \mathbf{e}) + \frac{r}{2} (\boldsymbol{\varepsilon} - \mathbf{e})^{2} - \mathcal{W}_{ext}(\mathbf{u})$$

$$0 = \delta_{\mathbf{u}} \mathcal{L} = \int_{\Omega} \left[\frac{\partial \Phi}{\partial \boldsymbol{\varepsilon}} + \boldsymbol{\lambda} + r(\boldsymbol{\varepsilon} - \mathbf{e}) \right] : \boldsymbol{\delta} \boldsymbol{\varepsilon} - \boldsymbol{\delta} \mathcal{W}_{ext}$$

$$0 = \delta_{\mathbf{e}} \mathcal{L}(\mathbf{u},a,\mathbf{e},\boldsymbol{\lambda}) = \int_{\Omega} c \nabla \mathbf{e} : \nabla \boldsymbol{\delta} \mathbf{e} - \boldsymbol{\lambda} : \boldsymbol{\delta} \mathbf{e} - r(\boldsymbol{\varepsilon} - \mathbf{e}) : \boldsymbol{\delta} \mathbf{e}$$

$$0 = \delta_{\boldsymbol{\lambda}} \mathcal{L}(\mathbf{u},a,\mathbf{e},\boldsymbol{\lambda}) = \int_{\Omega} (\boldsymbol{\varepsilon} - \mathbf{e}) : \boldsymbol{\delta} \boldsymbol{\lambda}$$

DAMAGE GRADIENT MODEL AND MIXED FINITE ELEMENTS

Continuum

$$\mathcal{E}(\mathbf{u},a) \equiv \int_{\Omega} \Phi(\mathbf{\varepsilon},a) + \frac{c}{2} \|\nabla a\|^2 - \mathcal{W}_{ext}(\mathbf{u})$$

Similar to phase-field methods

$$0 = \delta_{\mathbf{u}} \mathcal{E} = \int_{\Omega} \frac{\partial \Phi}{\partial \mathbf{\epsilon}} : \delta \mathbf{\epsilon} - \delta \mathcal{W}_{ext}$$
$$0 = \delta_{a} \mathcal{E} = \int_{\Omega} \left(\frac{\partial \Phi}{\partial a} - c \nabla^{2} a \right) \delta a + bna$$

Lagrangian relaxation and spatial discretisation

$$\mathcal{L}(\mathbf{u},a,\lambda,d) \equiv \int_{\Omega} \Phi(\mathbf{\epsilon},d) + \frac{c}{2} \|\nabla a\|^{2} + \lambda(a-d) + \frac{r}{2}(a-d)^{2} - \mathcal{W}_{ext}(\mathbf{u})$$

$$0 = \delta_{d}\mathcal{L}(\mathbf{u},a,\lambda,d) = \int_{\Omega} \left[\frac{\partial\Phi}{\partial d} - \lambda - r(a-d)\right] \delta d$$

$$0 = \delta_{a}\mathcal{L}(\mathbf{u},a,\lambda,d) = \int_{\Omega} c \nabla a : \nabla \delta a + \lambda \, \delta a + r(a-d) \delta a$$

$$0 = \delta_{\lambda}\mathcal{L}(\mathbf{u},a,\lambda,d) = \int_{\Omega} (a-d) \delta \lambda$$

GRADIENT DAMAGE: ROBUSTNESS, RELIABILITY, PERFORMANCE

CONCRETE SPECIMEN – UNSYMMETRICAL BENDING

3D CONCRETE SPECIMEN – TORSION LOADING

Torsion 10 cm Brokenshire (1996)

APPLICATION TO A 3D REINFORCED CONCRETE STRUCTURE

TUNNEL EXCAVATION

Strain gradient model / strain-softening plasticity

NT DUCTILE SPECIMEN

Gradient plasticity – Gurson Tvergaard Needleman (GTN)

DUCTILE FRACTURE NEAR A CRACK TIP

Porosity distribution blunting initiation propagation propagation

Relation to Fracture Mechanics

Constant crack tip opening angle (CTOA)

Critical plasticity during propagation

Gradient plasticity – Gurson Tvergaard Needleman (GTN)

OUTLINE

Cohesive Zone Models (CZM)

- Principle and basic finite elements
- Extrinsic and intrinsic laws Numerical consequences
- Interface mixed finite elements
- Instabilities and path-following methods
- Crack path prediction and related issues

Continuum Damage Mechanics (CDM)

- Strain-softening, localisation and constitutive nonlocality
- Nonlocal constitutive relations
- Gradient models: formulation and mixed finite elements
- Anisotropy vs isotropy and damage stiffness coupling
- Vanishing internal length and the cohesive limit

ISOTROPIC OR ANISOTROPIC DAMAGE ?

A question of scale

- Homogenised cracks \rightarrow anisotropic damage
- Single crack → isotropic damage ⇒ anisotropy at higher scale

Isotropy is not contradictory with tension / compression contrast

- On the damage threshold (concrete for instance)
- On the elastic behaviour after damage (crack closure)
- Impact on shear = tension + compression

54 / 64

TENSION / COMPRESSION SPLIT

Energy split

$$\frac{1}{2} \boldsymbol{\varepsilon} : \boldsymbol{\varepsilon} = \boldsymbol{w}^{t}(\boldsymbol{\varepsilon}) + \boldsymbol{w}^{c}(\boldsymbol{\varepsilon})$$
$$\boldsymbol{w}(\boldsymbol{\varepsilon}, a) = \boldsymbol{A}(a) \boldsymbol{w}^{t}(\boldsymbol{\varepsilon}) + \boldsymbol{w}^{c}(\boldsymbol{\varepsilon})$$

Focus on the "broken" material

Tensile strain tensors

$$\mathcal{T} = \left\{ \boldsymbol{\epsilon} ; \mathbf{w}^{c} \left(\boldsymbol{\epsilon} \right) = \mathbf{0} \right\}$$

PRACTICAL CONSEQUENCE OF DAMAGE / STIFFNESS COUPLING

Cavity volume variation

SHEAR DAMAGE NEAR A TENDON (STEEL / CONCRETE INTERFACE)

OUTLINE

Cohesive Zone Models (CZM)

- Principle and basic finite elements
- Extrinsic and intrinsic laws Numerical consequences
- Interface mixed finite elements
- Instabilities and path-following methods
- Crack path prediction and related issues

Continuum Damage Mechanics (CDM)

- Strain-softening, localisation and constitutive nonlocality
- Nonlocal constitutive relations
- Gradient models: formulation and mixed finite elements
- Anisotropy vs isotropy and damage stiffness coupling
- Vanishing internal length and the cohesive limit

CONSISTENCY WITH A COHESIVE ZONE MODEL

PRACTICAL CHOICE OF THE CHARACTERISTIC LENGTH D

How should the internal length D be calibrated ?

- Interest in the macroscopic response only
- The macroscopic results are not sensitive to (small) values of D

D small compared to the structure (~ *L*/10) and sufficiently large to avoid any numerical burden

CONSISTENCY BETWEEN CZM AND GRADIENT DAMAGE

SUMMARY – CONTINUUM DAMAGE MECHANICS

Strong points

- Description of all phases of the damage process
- Crack path prediction

Shortcomings

- Description of a real crack
- Parameter identification
- Highly nonlinear computations
- Highly expensive computations
- Necessary mesh-adaptivity

Technical tools

• Nonlocal constitutive relations

WHAT WAS SET ASIDE

Modelling

- Thick level set (TLS)
- Boundary conditions
- Transition from localised damage to crack

Numerical treatments

- Convergence criteria
- Incompressibility and volumetric locking
- Numerical schemes and solvers

Computation

Mesh adaptivity

MY PHILOSOPHY REGARDING NUMERICAL STRATEGIES

1. Avoid damage computations if post-treatment criteria are applicable

- Energy release rate *G*, path integral *J*
- Rice and Tracey growth criterion

2. If you can guess potential crack paths, use Cohesive Zone Models

- No stiffness regularisation (extrinsic laws)
- Mixed finite elements along the crack path
- Path-following methods if instabilities are expected

3. Otherwise rely on Continuum Damage Mechanics

- Nonlocal constitutive laws (preferably gradient models)
- Refined mesh in the damaged areas
- High computational cost