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SOME TARGET STRUCTURES AT EDF
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OBJECTIVES

Characteristics

• Large structures

• Large crack propagation

• Various materials

Restricted framework

• Quasi-static tensile loading

• Scale of a single macroscopic crack

Quantities of interest

• Maximal load, potential instabilities

• Crack path, length and opening (tightness)

(Tate Modern, Londres)

Computation

• Robustness

• Reliability

• Performance
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AVAILABLE MODELING TOOLS
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Fictitious crack model

Continuum Damage Mechanics (CDM)

Smeared crack model

Engineer parameters (σc , GF)

Crack modeling: opening, length, contact

Damage threshold in the stress space

Crack path description
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OUTLINE

Cohesive Zone Models (CZM)

• Principle and basic finite elements

• Extrinsic and intrinsic laws – Numerical consequences

• Interface mixed finite elements

• Instabilities and path-following methods

• Crack path prediction and related issues

Continuum Damage Mechanics (CDM)

• Strain-softening, localisation and constitutive nonlocality

• Nonlocal constitutive relations

• Gradient models: formulation and mixed finite elements

• Anisotropy vs isotropy and damage – stiffness coupling

• Vanishing internal length and the cohesive limit



6 / 64

MY PHILOSOPHY REGARDING NUMERICAL STRATEGIES

1. Avoid damage computations if post-treatment criteria are applicable

• Energy release rate G, path integral J

• Rice and Tracey growth criterion

2. If you can guess potential crack paths, use Cohesive Zone Models

• No stiffness regularisation (extrinsic laws)

• Mixed finite elements along the crack path

• Path-following methods if instabilities are expected

3. Otherwise rely on Continuum Damage Mechanics

• Nonlocal constitutive laws (preferably gradient models)

• Refined mesh in the damaged areas

• High computational cost



Cohesive zone models
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OUTLINE

Cohesive Zone Models (CZM)

• Principle and basic finite elements

• Extrinsic and intrinsic laws – Numerical consequences

• Interface mixed finite elements

• Instabilities and path-following methods

• Crack path prediction and related issues

Continuum Damage Mechanics (CDM)

• Strain-softening, localisation and constitutive nonlocality

• Nonlocal constitutive relations

• Gradient models: formulation and mixed finite elements

• Anisotropy vs isotropy and damage – stiffness coupling

• Vanishing internal length and the cohesive limit
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COHESIVE FRACTURE: PRINCIPLE
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ADHESION AND STRESS THRESHOLD

Initial adhesion
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ENERGY FORMULATION AND BASIC FINITE ELEMENT
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OUTLINE

Cohesive Zone Models (CZM)

• Principle and basic finite elements

• Extrinsic and intrinsic laws – Numerical consequences

• Interface mixed finite elements

• Instabilities and path-following methods

• Crack path prediction and related issues

Continuum Damage Mechanics (CDM)

• Strain-softening, localisation and constitutive nonlocality

• Nonlocal constitutive relations

• Gradient models: formulation and mixed finite elements

• Anisotropy vs isotropy and damage – stiffness coupling

• Vanishing internal length and the cohesive limit
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EXTRINSIC OR INTRINSIC LAWS: PENALTY REGULARISATION
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PENALTY-INDUCED NUMERICAL DIFFICULTIES

Bad numerical conditioning

Choice of the penalty parameter r

A trade-off between:

1. Accuracy (?)

2. Performance (and even robustness)

Bending of sandwich beams

Ill-posed asymptotic problem

The asymptotic problem for r →∞ is

ill-posed (LBB condition not fulfiled)

⇓
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OUTLINE

Cohesive Zone Models (CZM)

• Principle and basic finite elements

• Extrinsic and intrinsic laws – Numerical consequences

• Interface mixed finite elements

• Instabilities and path-following methods

• Crack path prediction and related issues

Continuum Damage Mechanics (CDM)

• Strain-softening, localisation and constitutive nonlocality

• Nonlocal constitutive relations

• Gradient models: formulation and mixed finite elements

• Anisotropy vs isotropy and damage – stiffness coupling

• Vanishing internal length and the cohesive limit
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LAGRANGIAN RELAXATION

Objective

where S is a “troublesome function”

Steps
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Resulting in a mixed finite element (dof a and λ)

3.  Dualisation
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1.  Decomposition
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A MIXED FINITE ELEMENT FOR EXTRINSIC COHESIVE LAWS

Lagrangian relaxation

Spatial discretisation
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3D SANDWICH BEAMS WITH PRESCRIBED CRACK PATH
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Loading and boundary conditions
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DEFORMED SHAPE AND STRESS FIELD

Deformed shape and longitudinal stress
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PROCESS ZONE PROPAGATION

decohesion

adhesion
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OUTLINE

Cohesive Zone Models (CZM)

• Principle and basic finite elements

• Extrinsic and intrinsic laws – Numerical consequences

• Interface mixed finite elements

• Instabilities and path-following methods

• Crack path prediction and related issues

Continuum Damage Mechanics (CDM)

• Strain-softening, localisation and constitutive nonlocality

• Nonlocal constitutive relations

• Gradient models: formulation and mixed finite elements

• Anisotropy vs isotropy and damage – stiffness coupling

• Vanishing internal length and the cohesive limit



22 / 64

EXEMPLE OF STRUCTURAL INSTABILITIES
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ORIGIN OF THE INSTABILITIES

Physical instabilities

Numerical instabilities
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F
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Closed-form solution

Dissipated energy
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INSTABILITIES ALSO APPEAR WITH CDM
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PATH-FOLLOWING TECHNIQUE (ARC-LENGTH)
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Propositions

• Norm of the displacement increment (arc-length)

• Displacement increment in a well-chosen area
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• Maximal increment of cohesive damage
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OUTLINE

Cohesive Zone Models (CZM)

• Principle and basic finite elements

• Extrinsic and intrinsic laws – Numerical consequences

• Interface mixed finite elements

• Instabilities and path-following methods

• Crack path prediction and related issues

Continuum Damage Mechanics (CDM)

• Strain-softening, localisation and constitutive nonlocality

• Nonlocal constitutive relations

• Gradient models: formulation and mixed finite elements

• Anisotropy vs isotropy and damage – stiffness coupling

• Vanishing internal length and the cohesive limit
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COPING WITH DISCONTINUOUS DISPLACEMENT FIELDS

E-FEM X-FEM

Mesh independent of Γ Γ along mesh faces

Internal unknowns nodal unknwowns

Mesh adaptivity

1

2

3

1

2

3

Special finite elements

Remeshing Moving nodes

Mesh quality ?

Field projection ?
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ISSUES WITH CRACK PATH PREDICTION

Following all element faces

• Extrinsic laws only

• Approximating a curve with fixed segments

Ensuring crack path continuity

• In order to compute the correct dissipation

• Difficult to ensure step by step 3D continuity

Local crack orientation criterion

• Based on possibly perturbated quantities

• Set earlier or at damage inception (fixed crack)

• What definition in 3D ?

Mesh dependency, Feyel (2005)

Jirasek & Zimmermann (2005)
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ENERGETIC FORMULATION AND PHASE-FIELD REGULARISATION
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SUMMARY – COHESIVE ZONE MODELS

Strong points

• Deal with initiation, propagation and ultimate failure

• Consistent with Fracture Mechanics

• Realistic crack description (length, opening, …)

• Engineer parameters (peak stress, fracture energy)

Shortcomings

• Nonlinear and potentially unstable computations

• Mesh-refinement inside the cohesive zone

• 3D crack path prediction

Technical tools

• Mixed finite elements

• Path-following methods



Continuum Damage Mechanics
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OUTLINE

Cohesive Zone Models (CZM)

• Principle and basic finite elements

• Extrinsic and intrinsic laws – Numerical consequences

• Interface mixed finite elements

• Instabilities and path-following methods

• Crack path prediction and related issues

Continuum Damage Mechanics (CDM)

• Strain-softening, localisation and constitutive nonlocality

• Nonlocal constitutive relations

• Gradient models: formulation and mixed finite elements

• Anisotropy vs isotropy and damage – stiffness coupling

• Vanishing internal length and the cohesive limit
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WHY DAMAGE CONSTITUTIVE LAWS ARE NONLOCAL

Constitutive relations are nonlocal

• The scale of the damage pattern is comparable to the microstructure size 

• The scale separation assumption (homogenisation) does not hold anymore 

• A constitutive coupling between neighbour material points takes place

Concrete SENB, acoustic emission energy

Muralidhara et al. (2010)

X100 pipeline steel NT, cavity growth

(Besson, Morgeneyer)

Damage evolves in layers of small thickness
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STRAIN-SOFTENING AND DAMAGE LOCALISATION

Strain-softening

The set of admissible stresses shrinks with increasing damage (and strain)
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ε
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Localisation

Strain-softening and equilibrium enable damage (and strain) localisation

Damage band width

Nonlocality rules the localisation band width

ε

σ
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DAMAGE SIMULATIONS WITHOUT NONLOCALITY

Ill-posed mathematical problem
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CRACK PATH AND INTUITIVE MESHING

z
z

∂Ω
=u e

z



37 / 64

OUTLINE

Cohesive Zone Models (CZM)

• Principle and basic finite elements

• Extrinsic and intrinsic laws – Numerical consequences

• Interface mixed finite elements

• Instabilities and path-following methods

• Crack path prediction and related issues

Continuum Damage Mechanics (CDM)

• Strain-softening, localisation and constitutive nonlocality

• Nonlocal constitutive relations

• Gradient models: formulation and mixed finite elements

• Anisotropy vs isotropy and damage – stiffness coupling

• Vanishing internal length and the cohesive limit
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INTRODUCING NONLOCALITY

Principle

• Stress and/or damage depend on what happens elsewhere

Internal length

• The influence decreases with distance

• Dimensional analysis : existence of one or several internal lengths d
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CAN WE SAY THAT NONLOCAL = LOCAL + REGULARISATION ?
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ENERGETIC APPROACH

Potential energy
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NONLOCAL FORMULATIONS
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1. Solution existence
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Gradient models
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QUALITATIVE ANALYSIS

Gradient models Localisation limiters
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OUTLINE

Cohesive Zone Models (CZM)

• Principle and basic finite elements

• Extrinsic and intrinsic laws – Numerical consequences

• Interface mixed finite elements

• Instabilities and path-following methods

• Crack path prediction and related issues

Continuum Damage Mechanics (CDM)

• Strain-softening, localisation and constitutive nonlocality

• Nonlocal constitutive relations

• Gradient models: formulation and mixed finite elements

• Anisotropy vs isotropy and damage – stiffness coupling

• Vanishing internal length and the cohesive limit
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STRAIN GRADIENT MODEL AND MIXED FINITE ELEMENTS
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DAMAGE GRADIENT MODEL AND MIXED FINITE ELEMENTS
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GRADIENT DAMAGE: ROBUSTNESS, RELIABILITY, PERFORMANCE
D
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CONCRETE SPECIMEN – UNSYMMETRICAL BENDING

CMOD

bending

Data calibration on

Brazilian and three 

point bending tests
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3D CONCRETE SPECIMEN – TORSION LOADING

Torsion  10 cm

Brokenshire (1996)
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APPLICATION TO A 3D REINFORCED CONCRETE STRUCTURE
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TUNNEL EXCAVATION

Strain gradient model / strain-softening plasticity



51 / 64

NT DUCTILE SPECIMEN

PorosityEquivalent plastic strainMesh

Gradient plasticity – Gurson Tvergaard Needleman (GTN)
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DUCTILE FRACTURE NEAR A CRACK TIP

blunting

initiation

propagation

propagation

Porosity distribution

J

Δa

Constant crack tip opening angle (CTOA)

Critical plasticity during propagation

Relation to Fracture Mechanics

Gradient plasticity – Gurson Tvergaard Needleman (GTN)



53 / 64

OUTLINE

Cohesive Zone Models (CZM)

• Principle and basic finite elements

• Extrinsic and intrinsic laws – Numerical consequences

• Interface mixed finite elements

• Instabilities and path-following methods

• Crack path prediction and related issues

Continuum Damage Mechanics (CDM)

• Strain-softening, localisation and constitutive nonlocality

• Nonlocal constitutive relations

• Gradient models: formulation and mixed finite elements

• Anisotropy vs isotropy and damage – stiffness coupling

• Vanishing internal length and the cohesive limit
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ISOTROPIC OR ANISOTROPIC DAMAGE ?

A question of scale

• Homogenised cracks → anisotropic damage

• Single crack → isotropic damage  � anisotropy at higher scale

Isotropy is not contradictory with tension / compression contrast

• On the damage threshold (concrete for instance)

• On the elastic behaviour after damage (crack closure)

• Impact on shear = tension + compression

damage surface in stress space

ε

σ

crack closure
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TENSION / COMPRESSION SPLIT
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PRACTICAL CONSEQUENCE OF DAMAGE / STIFFNESS COUPLING

Cavity volume variation
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SHEAR DAMAGE NEAR A TENDON (STEEL / CONCRETE INTERFACE)
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OUTLINE

Cohesive Zone Models (CZM)

• Principle and basic finite elements

• Extrinsic and intrinsic laws – Numerical consequences

• Interface mixed finite elements

• Instabilities and path-following methods

• Crack path prediction and related issues

Continuum Damage Mechanics (CDM)

• Strain-softening, localisation and constitutive nonlocality

• Nonlocal constitutive relations

• Gradient models: formulation and mixed finite elements

• Anisotropy vs isotropy and damage – stiffness coupling

• Vanishing internal length and the cohesive limit
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CONSISTENCY WITH A COHESIVE ZONE MODEL
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• Fracture energy GF

• Band width D

decreasing D and set 

values of GF and σcst
re

ss

opening



60 / 64

PRACTICAL CHOICE OF THE CHARACTERISTIC LENGTH D

How should the internal length D be calibrated ?

• Interest in the macroscopic response only

• The macroscopic results are not sensitive to (small) values of D

2D

σ
2

c F

c

E G
∝

1a = 0 1a< <

cohesive

response

+

crack path

prediction

D small compared to the structure (~ L/10) and

sufficiently large to avoid any numerical burden
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CONSISTENCY BETWEEN CZM AND GRADIENT DAMAGE

Cavity volume
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SUMMARY – CONTINUUM DAMAGE MECHANICS 

Strong points

• Description of all phases of the damage process

• Crack path prediction

Shortcomings

• Description of a real crack

• Parameter identification

• Highly nonlinear computations

• Highly expensive computations

• Necessary mesh-adaptivity

Technical tools

• Nonlocal constitutive relations
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WHAT WAS SET ASIDE

Modelling

• Thick level set (TLS)

• Boundary conditions

• Transition from localised damage to crack

Numerical treatments

• Convergence criteria

• Incompressibility and volumetric locking

• Numerical schemes and solvers

Computation

• Mesh adaptivity
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MY PHILOSOPHY REGARDING NUMERICAL STRATEGIES

1. Avoid damage computations if post-treatment criteria are applicable

• Energy release rate G, path integral J

• Rice and Tracey growth criterion

2. If you can guess potential crack paths, use Cohesive Zone Models

• No stiffness regularisation (extrinsic laws)

• Mixed finite elements along the crack path

• Path-following methods if instabilities are expected

3. Otherwise rely on Continuum Damage Mechanics

• Nonlocal constitutive laws (preferably gradient models)

• Refined mesh in the damaged areas

• High computational cost


