

RUPTURE OF MATERIALS AND STRUCTURES Mechanisms and modelling VS. industrial applications MECAMAT, AUSSOIS 2019

René BILLARDON — Safran Landing Systems

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

OUTLINE

Industrial environment

- □ Structures, systems, loadings
- Certification procedures
- □ High strength metallic materials
- □ Prediction of the rupture of a structure under monotonic loading

> Application to structures made of High Strength steels

- □ Constitutive model and ductile damage model
- Prediction of the rupture
 - Local material rupture
 - Global instability

> Other typical applications

Some conclusions

3

INDUSTRIAL ENVIRONMENT

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

AERONAUTICAL SYSTEMS

- > Landing Gears, Wheels & Brakes
- > Systems and Equipment

CERTIFICATION PROCEDURES

Different strength requirements – Static (monotonic) loading

- > Landing Gear, Wheels & Brakes, Systems and Equipment
 - □ Fatigue loads
 - □ Limit loads: maximal loads expected in service
 - No detrimental permanent deformation of the structure
 - Ultimate loads: each limit load case multiplied by a safety factor of 1.5
 - No rupture
- Engines
 - □ Fatigue loads
 - □ A few limit loads expected in service
 - □ A few ultimate loading cases due to particular adverse conditions
 - e.g. Fan Blade Out, turbine over-speed

CERTIFICATION PROCEDURES

Different strength requirements – Fatigue loading

- > Safe life approach
 - □ No (detectable) crack in the structure in service

Damage tolerant approach

- □ To cope with anomalies occurring in-service or/and during maintenance operations
- □ To assess the fatigue life of non Critical Structural Elements
- Regular inspections so that the residual strength of the structure is capable of the limit loads

CERTIFICATION PROCEDURES

Different requirements – Tests and analyses

- Landing Gear
 - Certification by Type Certificate Holder (aircraft manufacturer) by analysis supported by tests
 - Hundreds of non-proportional load cases
- Wheels & Brakes
 - Qualification and Technical Standard Order by tests supported by analyses
 - Certification by Type Certificate Holder (aircraft manufacturer) after flight tests

Systems and Equipment

- All components certified by tests supported by analyses except for Critical Structural Elements (e.g. retraction actuator)
- □ Integrated systems certified by tests and analyses mainly at aircraft level

Engines

□ Certification **by analysis supported by tests**

CERTIFICATION PROCEDURES

Analysis vs. tests

> Analyses

- □ To deal with numerous complex load cases
- □ To deal with the scatter of material properties and the scatter of parts geometry

Tests

- □ Tests at different scales to support analysis methods
- □ Full scale –detail or complete- tests to certify a particular system

> Past experience

- Positive lessons learnt from in-service systems validate the methods that were used for their design whatever their theoretical background
- □ Authorities strongly support the use of "classical" methods

CERTIFICATION PROCEDURES

Analysis vs. tests

- > A need for new analysis methods and tools
 - □ To introduce new designs and new materials
 - □ To take best benefit of 3D analysis tools
 - □ To better control conservatisms to be decreased because of weight reductions
- New analysis tools must not lead to a regression when applied to a system that has been already certified
- > Models used to better understand mechanisms
 - vs. models to design structures

MATERIALS

Safran Landing Systems / January 22nd, 2019 / René BILLARDON This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran SAFRAN

MATERIALS

High strength materials

- High yield stresses
 - □ Large elastic strains
- > Low Hardening
 - $\Box \quad UTS / YS < 1.x$

> Different forms of ductility depending on the materials

- \Box For several materials: small strain to UTS e_u
- \Box No correlation between e_u and Elongation or Reduction of Area

> Toughness

□ For several materials: small

STANDARD STATIC ANALYSIS

General approach

- > Specifications
 - □ Loading cases
- Structural analysis
 - □ Inputs:
 - Geometry
 - Boundary Conditions, loads
 - Material strain behaviour
- Strength assessment
 - Material rupture criterion
 - □ Geometrical instability

APPLICATION TO STRUCTURES MADE OF HIGH STRENGTH STEELS

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

14

Ductile rupture criterion for ML340 steel (from C. Defaisse PhD 2018)

ML340 steel

- Complex microstructure
 - □ Typical composition (wt%)

Fe	С	Ni	Cr	Мо	AI	Со	V
Base	0.23	13.	3.3	1.5	1.5	5.8	0.25
	(from /	Auber	t & Di	uval 2	015)	

- □ Martensite + 1wt% austenite
- \Box Carbides and intermetallics (<1 μ m)
- AIN inclusions

Safran Landing Systems / January 22nd, 2019 / René BILLARDON

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

J JAFRAN

Ductile rupture criterion for ML340 steel (from C. Defaisse PhD 2018) ML340 steel

Very high strength

SAFRAN

Ductile rupture criterion for ML340 steel (from C. Defaisse PhD 2018) ML340 steel

- Elastoplastic stress-strain behaviour
 - von Mises criterion, isotropic hardening
 - □ Inverse identification using necking geometry

Ductile rupture criterion for ML340 steel (from C. Defaisse PhD 2018) ML340 steel

Elastoplastic stress-strain behaviour

□ Inverse identification using necking geometry

SAFRAN

Ductile rupture criterion for ML340 steel (from C. Defaisse PhD 2018) ML340 steel

Ductile damage model

- Experimental campaign
 - TCT: tension-compression-torsion
 - DP: plane deformation
 - AL: standard tension
 - AE: cylindrical notched tension
 - EU: plane notched tension
- Model proposed

Safran Landing Systems / January 22nd, 2019 / René BILLARDON

SAFRAN

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

Ductile rupture criterion for ML340 steel (from C. Defaisse PhD 2018) ML340 steel

- > Numerical simulation of all tests and inverse identification of damage model
 - □ Cylindrical notched tension (AE) and Plane tension (DP)

Ductile rupture criterion for ML340 steel (from C. Defaisse PhD 2018) ML340 steel

> Numerical simulation of all tests and inverse identification of damage model

Tension-Compression-Torsion

Ductile rupture criterion for ML340 steel (from C. Defaisse PhD 2018) ML340 steel

> Identified damage model

Fracture surface of a torsion coupon

TORSION MODULUS OF RUPTURE – TMoR ALLOWABLE

"Classical" approach to size tubes submitted to torsion loading

TMOR ALLOWABLE – NUMERICAL PREDICTIONS (from M. Al Kotob PhD 2019)

Competition between local and global instabilities

- > Approaches
 - □ Material failure by strain localization
 - Loss of ellipticity : Rice criterion
 - □ Hill loss of stability analysis
 - □ Finite strain formalism
 - von Mises criterion
 - Isotropic hardening

Figure 2.8.3.2(i). Torsional modulus of rupture - plain carbon steels, F_{tu} = 240 ksi.

TMOR ALLOWABLE – NUMERICAL PREDICTIONS (from M. Al Kotob PhD 2019)

Comparison with test results for ML340 steel

TMoR ALLOWABLE – EXPERIMENTAL RESULTS

Test rigs at TestEng lab Safran Landing Systems Gloucester

- > First experimental campaign on 300M martensitic steel
 - \Box 3 specimens for each size (*L/D*, *D/t*)
 - □ Torque, rotation, strain gauges, DIC on specimens, optical markers on test rig

TMoR ALLOWABLE – EXPERIMENTAL RESULTS

Comparison of test results for 300M steel with Lee & Ades predictions (from N. Antoni)

TMOR ALLOWABLE – FINITE ELEMENT SIMULATIONS

Comparison with test results for 300M steel for stable structures

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

TMOR ALLOWABLE – FINITE ELEMENT SIMULATIONS

Comparison with test results for 300M steel for geometrical instabilities

Geometry of the specimens

- □ Small geometrical imperfections measured on each specimens
 - In general different for the 3 specimens of the same geometry
- □ No obvious relationship between instability onset and instability mode

Sensitivity of the predicted global response

- □ No obvious relationship between geometrical imperfections and the predicted instability mode
- □ Further investigations on the influence of Boundary Conditions in progress

TMOR ALLOWABLE – NUMERICAL PREDICTIONS (from M. Al Kotob PhD 2019)

Sensitivity to material hardening – Prediction of strain localization

TMOR ALLOWABLE – NUMERICAL PREDICTIONS (from M. Al Kotob PhD 2019)

Sensitivity to material hardening – Prediction of geometrical instabilities

Safran Landing Systems / January 22nd, 2019 / René BILLARDON

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

TMOR ALLOWABLE – NUMERICAL PREDICTIONS (from M. Al Kotob PhD 2019)

Sensitivity to Boundary Conditions – Prediction of geometrical instabilities (L/D = 0.5)

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

TMOR ALLOWABLE – NUMERICAL PREDICTIONS (from M. Al Kotob PhD 2019)

Sensitivity to Boundary Conditions – Prediction of geometrical instabilities (L/D = 12)

3

34

OTHER APPLICATIONS

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

FUSE PINS

Design and analysis

- Designed to provide

 a safe and controlled separation
 of the landing gear from the aircraft
 - □ Special care to fatigue life assessment

FUSE PINS

Design and analysis

Analysis supported by test

- □ Rupture at a load slightly larger that the ultimate load
- □ Shear design curves derived from dedicated tests
 - Fine tuning of the geometry to meet strength requirement and material variability

BUSH SUBJECTED TO EXTREME LOAD

Design and analysis

Prediction of the load leading to the fracture of the bronze bush

CONCLUSIONS

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

38

CONCLUSIONS

More efforts are needed on local rupture criteria

- Rupture initiation in contact zones
 - Lugs, assemblies

> Validation for different materials and loadings

- □ Effect of the stress-strain behaviour
- □ Effect of stress 3rd invariant
 - Shear + positive or negative stress 1st invariant
- □ Complex multiaxial non-proportional loadings
 - Complex tests to be designed

CONCLUSIONS

More efforts are needed on local rupture criteria

- How to cope with the variability of material properties?
 - Anisotropy
 - □ Isotropic and kinematic hardening
 - Behaviour post-localization,...
 - \rightarrow via numerical sensitivity analyses with validated tools?

CONCLUSIONS

More efforts are needed on global instability analyses

- How to cope with the variability of key factors?
 - □ Variability of material behaviour post-localization
 - □ Variability of components geometry
 - Uncertainty on Boundary Conditions
 - \rightarrow via numerical sensitivity analyses with validated tools?

CONCLUSIONS

Design allowables

Requirements for certification by analysis supported by tests

- □ Material allowables: material standard properties
- Design allowables: strength of particular features (lugs, tubes,...)

> Tests to support analysis methods

- Good knowledge of mean values and scatter of material and design allowables
 - To validate analysis methods at different scales
 - To substitute some tests at sub-component level by numerical simulations
 - To derive Reserve Factors taking account of material variability
- > Mature and documented analysis methods supported by tests at sub-components scale
 - □ To decrease the number and the complexity of full-scale tests

Safran Landing Systems / January 22nd, 2019 / René BILLARDON This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran SAFRAN

Safran Landing Systems / January 22nd, 2019 / René BILLARDON This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran SAFRAN

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

47

Г