Damage and strength predictions of 3D woven composite structures: state-of-the-art and perspectives

F. Laurin, A. Hurmane, V. Medeau, J. Rannou

THE FRENCH AEROSPACE LAB

return on innovation

Industrial context : 3D woven composites

LEAP engine

Landing gear

ONERA

INTERCOLOGICAL PROPERTY AND INCOME.

LEAP is a trademark of CFM International a 50/50 joint company between Safran Aircraft Engines and GE

Industrial context : National research projects

test Through additioners and

Three main steps for a robust design approach

Characterization tests

SEM image

X-ray

Comprehension of ϕ mechanisms

- Acoustic emission
- Digital image correlation
- X-Ray Tomography

- Determination of damage scenario
 - Use of different advanced techniques
 - Cross-check to 7 confidence in data *Strain, crack density,...*
 - Complementary → understand the material *Surface, volume, …*
 - Matrix damage and failure mechanisms

Matrix damage and failure mechanisms

- Determination of damage scenario
 - Use of different advanced techniques
 - Cross-check to 7 confidence in data *Strain, crack density,...*
 - Complementary → understand the material *Surface, volume, …*
 - Matrix damage and failure mechanisms

- Determination of damage scenario
- Use of different advanced techniques
- Cross-check to 7 confidence in data *Strain, crack density,...*
- Complementary → understand the material *Surface, volume, …*
- Matrix damage and failure mechanisms

- Determination of damage scenario
 - Use of different advanced techniques
 - Cross-check to 7 confidence in data *Strain, crack density,...*
 - Complementary → understand the material *Surface, volume, …*
 - Matrix damage and failure mechanisms

- Determination of damage scenario
- Use of different advanced techniques
- Cross-check to 7 confidence in data *Strain, crack density,...*
- Complementary → understand the material *Surface, volume, …*
- Matrix damage and failure mechanisms

Contents

Damage and failure model for elementary coupons

- Comprehension of the damage and failure mechanisms
- Proposition of a macroscopic damage and failure model
- Validation through comparisons with coupon tests

Strength of composite structures with singularities

- Experimental study on progressive yarn failures
- Modelling of fibre yarn failure physical key quantities
- Implementation of a softening behaviour in a FE code

Conclusions Perspectives

Advantages and limitations of failure approach Identification protocol – Validation tests

Experimental study of damage mechanisms

static

[Rakotoarisoa 13]

THE FRENCH AEROSPACE LAB

Fatigue

Impact

Analysis of different damage mechanisms

Static and fatigue tests

- Diffuse damage due to meso. architecture
- Similar damage for static and fatigue loadings
- Impact tests (≈drop tools)
- Diffuse damage oriented by microstructure
- No large delamination cracks as in laminates

Continuum damage models are relevant

onera

X-Ray tomography

ONERA and Theorem and Adding to 18

Onera damage model for 3D woven composite

and the same of a little of the

ĕ

ĕ

ĕ

Onset of damage mechanisms

In-plane damage mechanisms

Voigt notation

- Damage oriented by architecture (2 scalar variables)

$$\begin{cases} y_1 = \frac{1}{2} \left(\varepsilon_1^{d_1^+} : C_{11}^0 : \varepsilon_1^{d_1^+} + a_{16} \varepsilon_6^{d_1^+} : C_{66}^0 : \varepsilon_6^{d_1^+} + a_{15} \varepsilon_5^{d_1^+} : C_{55}^0 : \varepsilon_5^{d_1^+} \right) \\ y_2 = \frac{1}{2} \left(\varepsilon_2^{d_2^+} : C_{22}^0 : \varepsilon_2^{d_2^+} + a_{26} \varepsilon_6^{d_2^+} : C_{66}^0 : \varepsilon_6^{d_2^+} + a_{24} \varepsilon_4^{d_2^+} : C_{44}^0 : \varepsilon_4^{d_2^+} \right) \end{cases}$$

- \mathcal{L} \mathcal{E}^+ used to improve predictions of onset of damage
 - Reinforcement for combined shear / compression loading

$$\begin{aligned} & \textcircled{Out-of-plane damage mechanism} & Voigt notation \\ & \textcircled{S} & 2 \text{ elementary thermo-dynamical forces} \\ & y_3 = y_3^p + y_3^{php} \\ & \begin{cases} y_3^p = \frac{1}{2} \Big(\varepsilon_{3^3}^{D_3^+} : C_{33}^0 : \varepsilon_{3}^{D_3^+} + a_{34} \varepsilon_{4}^{D_3^+} : C_{44}^0 : \varepsilon_{4}^{D_3^+} + a_{35} \varepsilon_{5}^{D_3^+} : C_{55}^0 : \varepsilon_{5}^{D_3^+} \Big) \\ & y_3^{php} = \frac{1}{2} \Big(c_{31} \langle \varepsilon_1 \rangle_{+}^2 + c_{32} \langle \varepsilon_2 \rangle_{+}^2 + c_{36} \varepsilon_{6}^2 \Big) \end{aligned}$$

Coupling between in-plane and out-of-plane loading

ONER

of the second statistics of

Damage evolution laws and damage effects

Damage evolution laws

- Damage evolution laws
- Onset of damage y₀
- Saturation of damage d_c
- Evolution parameters (y₀, p)

$$d_{i} = d_{c_{i}} \left(1 - \exp\left(-\left(\frac{\left\langle \sqrt{y_{i}} - \sqrt{y_{0_{i}}} \right\rangle_{+}}{\sqrt{y_{c_{i}}}} \right)^{p_{i}} \right) \right)$$

Damage can only grow $\dot{d}_{i} \ge 0$

Anisotropic effect tensors

Influence on the effective compliance

$$\Delta \underline{\underline{S}}^{m} = \sum_{i} d_{i} \underline{\underline{H}}_{i}$$

- Depend on the elastic properties
- Determined thanks to micromechanical approach [1] [Laws & Sih 77]

Failure mechanisms

Tension failure of fibre yarns

- Failure cracks are oriented by the microstructure (failure of fibre yarns)
- 2 scalar failure variables (D_1^t, D_2^t)

• Driving $y_1^{D+} = \frac{1}{2} C_{11}^0 \langle \varepsilon_1 \rangle_+^2$ and $y_2^{D+} = \frac{1}{2} C_{22}^0 \langle \varepsilon_2 \rangle_+^2$

Compression failure of fibre yarns

- Failure cracks are oriented by the microstructure (orientation of fibre yarns)
- 2 scalar failure variables (D_1^c, D_2^c)

• Driving forces $\begin{cases} y_1^{D-} = \sqrt{\langle \sigma_1 - \sigma_3 \rangle_+^2 + a_1^t \tau_{13}^2} \\ y_2^{D-} = \sqrt{\langle \sigma_2 - \sigma_3 \rangle_+^2 + a_2^t \tau_{23}^2} \end{cases}$

- Influence of the hydrostatic pressure
 - No possible failure if $\sigma_{11}{=}\sigma_{22}{=}\sigma_{33}$ compression
- Influence of the out-of-plane shears

Implementation in FE codes

Implementation in FE codes

Implementation in different FE Codes

Available in different commercial finite element

codes with implicit solver

amtach

 Proposition of driving forces and damage variables simple to analyse (evolving between 0 and 1)

Special care to the accuracy of the consistent tangent matrix

- Validation thanks to cross-check with numerical solution on 51 test cases (perturbation method)
- Non symmetrical 4th order tensor

Comparisons with static test results

ONER.

of Theory of Statistics of the

Experimental failure load

Conclusions

Comparisons with static test results

Conclusions

ONERA

of the second side of the second second

Comparisons with low velocity impact tests

ONERA

the TREACH DESIGNED IN

- Simulation with abaqus/standard (implicit solver)
- · Robust and efficient modelling (few hours)
- Comparisons with test results
- Accurate predictions of load/time curves for different impact energies
- Accurate estimation of damage patterns through the thickness of the specimens

Comparisons with low velocity impact tests

X-Ray tomography

Diffuse damage

Inter-yarn

debounding

- Simulation of impact tests ĕ
 - Simulation with abaqus/standard (implicit solver) ٠
 - Robust and efficient modelling (few hours) •
- Comparisons with test results

FE simulation

on a 3D woven

composite

material

Accurate predictions of load/time curves for ٠ different impact energies

No damage

Accurate estimation of damage patterns through ٠ the thickness of the specimens

on a 3D woven

Time (ms)

ONERA

INT TREACH AND INCOME.

D3 152.

130.

109.

87.0

65.2 43.5 21.7

0.000

Damage area

Comparisons with low velocity impact tests

- Simulation with abaqus/standard (implicit solver)
- · Robust and efficient modelling (few hours)
- Comparisons with test results
- Accurate predictions of load/time curves for different impact energies
- Accurate estimation of damage patterns through the thickness of the specimens

Simply supported

2

Time (ms)

3

D3

Contents

Damage and failure model for elementary coupons

- Comprehension of the damage and failure mechanisms
- Proposition of a macroscopic damage and failure model
- Validation through comparisons with tests

Strength of composite structures with singularities

- Experimental study on progressive yarn failures
- Modelling of fibre yarn failure physical key quantities
- Figure Mathematics In a softening behaviour in a FE code

Conclusions Perspectives

Advantages and limitations of failure approach Identification protocol – Validation tests

Experimental study of fibre yarn failure mechanisms

Presentation of the test campaign

- Test configurations with stable crack propagation
- 3D highly unbalanced woven material tested in the weft direction
- Identification of the critical energy release rate Gc for fibre yarn failure
 - Compact Tension test (CT) Marca [ASTM E1922-04], [Pinho 06], [Laffan10], [Bergan 16]
- Single Edge Notched Beam (SENB)
 [ASTM 5045-99]
- Design of specimens with specificities of 3D woven composites [Blanco 14]
- Size effect for CT specimens (5 different sizes with a constant thickness)

Configuration of the standard CT test

Configuration of the standard SENB test

Experimental study of fibre yarn failure mechanisms

Presentation of the test campaign

- Test configurations with stable crack propagation
 - 3D highly unbalanced woven material tested in the weft direction
 - Identification of the critical energy release rate Gc for fibre yarn failure
 - Compact Tension test (CT) 🗊 [ASTM E1922-04], [Pinho 06], [Laffan10], [Bergan 16]
 - Single Edge Notched Beam (SENB)
 [ASTM 5045-99]
 - Design of specimens with specificities of 3D woven composites [Blanco 14]
- Size effect for CT specimens (5 different sizes with a constant thickness)

SENB specimen

Crack propagation

Different measurement techniques

- Optical tracking (grey level gradient)
- DIC tracking (discontinuity disp. field)
- IR thermography (heating crack)
- X-Ray tomography (ex and in-situ)

Different measurement techniques

- Cross-check to
 Confidence
- Complementary technique *Surface, volume, ...*

Optical tracking

[Pack 17] [Panin 17]

DIC tracking

[Lopez-Crespo 08] [Vanlanduit 09] [Catalanotti 10]

IR Thermography

X-ray Tomography

[Muller 16] [Archer 17]

X-Ray tomography by Safran Aircraft Engines

ONERA

and Theorem and Adding to 18

the TREACH DESIGNED IN

and Theorem and Adding to 18

1200

Crack propagation

Different measurement techniques

- Optical tracking (grey level gradient)
- DIC tracking (discontinuity disp. field)
- IR thermography (heating crack)
- X-Ray tomography (ex and in-situ)

Search Different measurement techniques

- Cross-check to
 Confidence
- Complementary technique
 Surface, volume, ...

Optical tracking

[Pack 17] [Panin 17]

DIC tracking

Crack Length [mm]

[Lopez-Crespo 08][Vanlanduit 09][Catalanotti 10]

[Archer 17]

Safran Aircraft Engines

Crack propagation

Different measurement techniques

- Optical tracking (grey level gradient)
- DIC tracking (discontinuity disp. field)
- IR thermography (heating crack)
- X-Ray tomography (ex and in-situ)

Different measurement techniques

- Cross-check to
 Confidence
- Complementary technique *Surface, volume, ...*

Optical tracking

[Pack 17] [Panin 17]

DIC tracking

[Lopez-Crespo 08][Vanlanduit 09][Catalanotti 10]

IR Thermography

[Muller 16] [Archer 17]

X-Ray tomography by Safran Aircraft Engines

Crack propagation

Different measurement techniques

- Optical tracking (grey level gradient)
- DIC tracking (discontinuity disp. field)
- IR thermography (heating crack)
- X-Ray tomography (ex and in-situ)

Different measurement techniques

- Cross-check to
 Confidence
- Complementary technique *Surface, volume, ...*

Optical tracking

[Pack 17] [Panin 17]

DIC tracking

[Lopez-Crespo 08] [Vanlanduit 09] [Catalanotti 10]

IR Thermography

X-ray Tomography

[Muller 16] [Archer 17]

X-Ray tomography by Safran Aircraft Engines

Data analysis and results

Analysis of the available tests

- $\mathcal{G}_{\mathcal{C}}$ estimation for different sizes and types of specimens
 - Estimation with Area Method and the Modified Compliance Method
 - \bullet Evolution of apparent G_c as a function of the size of CT specimen
 - Different G_c for different types of specimens (CT and SENB)
- Use of LEFM is not relevant for 3D woven composites

Data analysis and results

Analysis of the available tests

- $\mathcal{G}_{\mathcal{C}}$ estimation for different sizes and types of specimens
 - Estimation with Area Method and the Modified Compliance Method
 - $\mbox{ }$ Evolution of apparent G_{c} as a function of the size of CT specimen
 - Different $G_{\rm c}$ for different types of specimens (CT and SENB)
- Use of LEFM is not relevant for 3D woven composites

Scaling laws

- Scaling laws (different sizes W) for materials without internal lengths 🛤 [Bazant 93]
 - With linear fracture mechanism: $\sigma_C \propto 1/\sqrt{W}$, $G_c \propto 1$ and $F_R \propto \sqrt{W}$
 - With stress based model: $\sigma_C \propto 1$, $G_c \propto W$ and $F_R \propto W$
- Scaling laws for materials with internal lengths
 - Already available for concrete and rock [Bazant 84, 93]
 - Introduction of internal length c_f linked to microstructure:
 - G_f : asymptotic energy release rate when $W \gg c_f$
 - W_0 : transition length depends on c_f and specimen geometry

and the party of a little of the

Mod. Test ← Sim.

and the party of a little of the

Scaling laws

- Scaling laws (different sizes W) for materials without internal lengths 🛤 [Bazant 93]
 - With linear fracture mechanism: $\sigma_C \propto 1/\sqrt{W}$, $G_c \propto 1$ and $F_R \propto \sqrt{W}$
 - With stress based model: $\sigma_C \propto 1$, $G_c \propto W$ and $F_R \propto W$
- Scaling laws for materials with internal lengths
 - Already available for concrete and rock [Bazant 84, 93]
 - Introduction of internal length c_f linked to microstructure:
 - G_f : asymptotic energy release rate when $W \gg c_f$
 - W_0 : transition length depends on c_f and specimen geometry

Scaling laws

- Scaling laws (different sizes W) for materials without internal lengths 🛤 [Bazant 93]
 - With linear fracture mechanism: $\sigma_C \propto 1/\sqrt{W}$, $G_c \propto 1$ and $F_R \propto \sqrt{W}$
 - With stress based model: $\sigma_C \propto 1$, $G_c \propto W$ and $F_R \propto W$
- Scaling laws for materials with internal lengths
 - Already available for concrete and rock [Bazant 84, 93]
 - Introduction of internal length c_f linked to microstructure:
 - G_f : asymptotic energy release rate when $W \gg c_f$
 - W_0 : transition length depends on c_f and specimen geometry

Moc

ONER

and Theorem and Adding to 18

Scaling laws

- Scaling laws (different sizes W) for materials without internal lengths [Bazant 93]
 - With linear fracture mechanism: $\sigma_{c} \propto 1/\sqrt{W}$, $G_{c} \propto 1$ and $F_{R} \propto \sqrt{W}$
 - $\sigma_C \propto 1$, $G_c \propto W$ and $F_R \propto W$ • With stress based model:
- Scaling laws for materials with internal lengths ĕ
 - Already available for concrete and rock [Bazant 84, 93]
 - Introduction of internal length c_f linked to microstructure:
 - G_f : asymptotic energy release rate when $W \gg c_f$
 - W_0 : transition length depends on c_f and specimen geometry

NO

ONER

of the second statistics of

Scaling laws

- Scaling laws (different sizes W) for materials without internal lengths 🛤 [Bazant 93]
 - With linear fracture mechanism: $\sigma_C \propto 1/\sqrt{W}$, $G_c \propto 1$ and $F_R \propto \sqrt{W}$
 - With stress based model: $\sigma_C \propto 1$, $G_c \propto W$ and $F_R \propto W$
- Scaling laws for materials with internal lengths
 - Already available for concrete and rock [Bazant 84, 93]
 - Introduction of internal length c_f linked to microstructure:
 - G_f: asymptotic energy release rate when W >> c_f
 - W₀: transition length depends on c_f and specimen geometry

Experimental study on internal lengths (1/2)

Internal lengths in 3D woven composites (1/2)

- Internal length along the crack path c_x
 - Progressive yarn cracking along the crack path highlighted using in-situ μ -tomography
 - Phenomenon guided by the architecture: linked to the inter-yarn length

Experimental study on internal lengths (2/2)

Internal lengths in 3D woven composites (2/2)

- \mathcal{Q} Internal length along the crack path c_y
 - SEM and macro-pictures of the fracture profile exhibit a distribution of the yarn cracking length, associated with pull-out.
 - Measured on CT with different sizes: no variation with the specimen size

test Through additioners on

Non-linear framework

- LE equivalent configuration: Far field approximation
 - Determination of an equivalent configuration (c_x, c_y) providing the same effects away from the crack
- Determination of the critical energy release rate

$$G_{C} = \frac{F_{C}^{2}}{W} g\left(\frac{a}{W} + \frac{c_{x}}{W}, \frac{c_{y}}{W}\right) \cong \frac{G_{f}}{1 + \frac{\partial_{x}g(x)c_{x}}{g(x)W} + \frac{\partial_{y}g(x)c_{y}}{g(x)W}} \quad \leftrightarrow \quad \frac{G_{f}}{1 + \frac{W_{0}}{W}}$$

- 3 material parameters to be identified (G_f , c_x , c_y)
- A priori known parameters $(W, g(x), \partial_x g(x), \partial_y g(x))$ g(x) can be determined using linear elastic FE simulations

Identification and validation on test results

Mod. Test ← Sim.

ONERA

of Theory of Adding of the

Validation of the proposed approach

- Identification protocol
 - Determination through apparent G_c analysis of different tests (CT and SENB) of asymptotic critical energy release rate G_f and (c_x, c_y) strongly linked to the microstructure
- Search Validation of the proposed non-linear framework
 - Consistent evolution of the apparent G_c for different CT sizes
 - Consistent prediction of the apparent G_c for different types of tests
 - Good prediction of the load/displacement curves

43

Strength prediction of large composite structures

Implementation in FE codes

- Robust implementation in finite element codes
 - Implementation in a FE code with an implicit solver Zebulon
 - Softening behaviour after fibre yarn failure
 - Avoid mesh dependence problem (size and orientation of elements)
- Physically based regularization techniques
 - Regularisation methods to avoid localisation problem
 - Methods used in physical key quantities

Mesh dependency problem

Presentation of the numerical test campaign

Models considered in the numerical test campaign

- **Regularisation methods**
 - Simulations performed with

code in quasi-static

- Delay effect methods [Needleman 88], [Allix 97], [Suffis 03], [Berro 06]
- Non local approach
 - [Pijaudier-Cabot 87], [Peerlings 96], [Lorentz 05] Phase-field method [Francfort Marigo 98], [Bourdin 00], [Miehe10]
- Analysis of key quantities
 - Avoid localization problem/mesh dependence
 - Predictive scale effect on load/displacement curves and apparent G_c

Geometry and mesh

- **Considered** geometry
 - Simulations performed on CT specimens with different sizes from 0.5 to 2.5
- **Considered meshes**
 - Fixed element size along the crack path whatever the specimen size

Material model with delay effect method

ONERA

and Theorem additioners in

Delay effect methods

Principle of delay effect method

[Needleman 88], [Allix 97], [Suffis 03], [Allix 13] initially developed for dynamic problems
 [Berro 06], [Marcin 10], [Hurmane 16] but also applied to quasi-static problems by other authors

- Introduction of a delay effect τ on damage
- Avoid mesh dependence, easy to implement in FE code

Scale effect predictions

- Evolution of failure load F_R as a function of W
- Linear evolution of the apparent G_c
- No internal length and energy control

→ Delay effect provides inaccurate scale effect for 3D woven composites

 $\dot{D} = \frac{1}{\tau} (F(y) - D)$

Material model with delay effect method

ONERA

and Theorem additioners in

Delay effect methods

Principle of delay effect method

[Needleman 88], [Allix 97], [Suffis 03], [Allix 13] initially developed for dynamic problems
 [Berro 06], [Marcin 10], [Hurmane 16] but also applied to quasi-static problems by other authors

- Introduction of a delay effect τ on damage
- Avoid mesh dependence, easy to implement in FE code

Scale effect predictions

- Evolution of failure load F_R as a function of W
- Linear evolution of the apparent G_c
- No internal length and energy control

→ Delay effect provides inaccurate scale effect for 3D woven composites

 $\dot{D} = \frac{1}{\tau} (F(y) - D)$

Material model with a non-local framework

Mod. Test ← Sim.

and the party of a little of the

Non-local approach

- Principle of non-local framework
 - [Pijaudier-Cabot 87], [Peerlings 96], [Lorentz 05], [Germain 06]
 - Diffused damage in a volume defined by an internal length l
 - Avoid mesh dependence, but intrusive to FE code
- Scale effect predictions
 - Complex evolution of failure load F_R and apparent G_c
 - Internal length considered but no energy control
 - No control of the crack failure pattern

 $\overline{Y} - l^2 \nabla^2 \overline{Y} = Y(\varepsilon)$

 → Non local qualitatively exhibits a relevant but complex scaling law

Material model with a phase-field method

Phase-field method

Principle of phase-field method

[Francfort Marigo 98], [Bourdin 00], [Miehe10]

- Diffused damage D with the introduction of (G_c, l)
- Intrusive to FE code but numerical difficulties
- Scale effect predictions
 - Accurate evolution of failure load F_R and apparent G_c
 - Internal lengths l and energy control G_c
 - Control of the crack failure pattern

$$\mathbf{D} - l^2 \nabla^2 D = \frac{2l}{G_c} (1 - D) E_0 \varepsilon^2$$

→ Phase-field exhibits the accurate scaling law for 3D woven composites

and the survey as a first day of the

Material model with a phase-field method

Phase-field method

Principle of phase-field method

[Francfort Marigo 98], [Bourdin 00], [Miehe10]

- Diffused damage D with the introduction of (G_c, l)
- Intrusive to FE code but numerical difficulties
- Scale effect predictions
 - Accurate evolution of failure load F_R and apparent G_c
 - Internal lengths l and energy control G_c
 - Control of the crack failure pattern

$$\mathbf{D} - l^2 \nabla^2 D = \frac{2l}{G_c} (1 - D) E_0 \varepsilon^2$$

→ Phase-field exhibits the accurate scaling law for 3D woven composites

<mark>Mod.</mark> Test ← Sim.

and the party of a little of the

Contents

Damage and failure model of elementary coupons

- Comprehension of the damage and failure mechanisms
- Proposition of a macroscopic damage and failure model
- Validation through comparisons with tests

Strength of composite structures with singularities

- Experimental study of progressive yarn failures
- Modelling of fibre yarn failure physical key quantities
- Implementation of a softening behaviour in a FE code

Conclusions Perspectives

Advantages and limitations of failure approach Identification protocol – Validation tests

Conclusions / Perspectives

Conclusions

- Damage mechanisms
 - Diffuse damage oriented by microstructure in 3D woven composite
 - Continuum damage model relevant for such a material
 - Validation through comparisons with static/impact tests

Failure mechanisms

- Experimental study using CT and SENB tests
- Evolution of apparent G_c as a function of size and type of tests
- Non linear fracture framework relevant (energy + lengths)
- Phase-Field method promising for such a material

Perspectives

- Experimental part
 - Proposition of new configurations of test for validation
 - Analysis tests with complex crack path (as in warp direction)
 - Develop experimental device for CT tests in most reinforced direction

Numerical part

- Improve robustness of Phase-Field method in Zset code
- Application to other structures with different geometrical singularities

of the second statistics of

1.1. A

 J_{Ω}

THE FRENCH AEROSPACE LAB

return on innovation

www.onera.fr