IDENTIFICATION DES MODÈLES DE RUPTURE DUCTILE TENANT COMPTE DE L'ÉTAT DE CONTRAINTE, DE LA VITESSE DE DÉFORMATION ET DE LA TEMPÉRATURE

Dirk Mohr

Chair of Computational Modeling of Materials in Manufacturing http://mohr.ethz.ch

ETH Zurich, Switzerland

Modeling Approaches

ETH Option #3: Damage Indicator Approach

Chose stress-state dependent fracture criterion such as Cockcroft & Latham (1968), Johnson & Cook (1985), Bai & Wierzbicki (2010), etc

Stress triaxiality

ETH

Localization Analysis

Definition: Lode angle parameter

Stress State Map: Unit Cell Analysis

ΤН

Unit Cell Model

[Dunand and Mohr, JMPS 2014]

- Matrix material: von Mises with isotropic hardening
- Initial defect volume fraction: 1.2%
- Periodic boundary conditions
- Macroscopic stress triaxiality and Lode parameter kept constant throughout loading

• Kinematic criterion to detect localization

- F Deformation gradient of the cell
- F⁰ Deformation gradient outside band of localization

Needleman & Tvergaard (1992)

ETH Micromechanical Localization Analysis

[Dunand and Mohr, JMPS 2014]

ETH

Hosford-Coulomb model

[Mohr and Marcadet, IJSS 2015]

ETH Comparison with Johnson-Cook Failure Model

ETH Important Points for Experimental Characterization

ETH Experiments with Proportional Loading Paths

In-plane shear

ETH ↑ Plane strain tension: ← → Mini-Nakazima with Dihedral Punch [Grolleau et al., IJMS 2019]

↑ Plane strain tension: → Mini-Nakazima with Dihedral Punch [Grolleau et al., IJMS 2019]

ETH

ETH Equi-biaxial tension: mini-punch test

[Roth & Mohr, IJP 2016]

Enhanced Peirs Specimen

[Roth & Mohr, IJMS 2018]

Optimal geometry depends on material ductility!

Effects of Strain Rate and Temperature on Ductile Fracture

SHB Tension experiments

ETH

Rate-dependent Fracture Model

Roth and Mohr (IJP, 2014)

Main assumption: strain to fracture increases with strain rate

• Basis: Hosford-Coulomb Model

$$\overline{\varepsilon}_{f,RD} = \left(1 + \gamma \ln\left[\frac{\dot{\overline{\varepsilon}}_p}{\dot{\varepsilon}_0}\right]\right) \overline{\varepsilon}_{f,RI}$$

ETH

Confirmation for Material #1 (TRIP780)

Roth and Mohr (IJP, 2014)

Confirmation for Material #2 (DP980)

Erice, Roth and Mohr (MOM, 2017)

Confirmation for Material #3 (CP1180)

Erice, Roth and Mohr (MOM, 2017)

Confirmation for Material #4 (Mars300)

Fras, Roth and Mohr (IJIE, 2018)

Open Question: What is the effect of strain rate on fracture strain for pure shear fracture?

Effect of loading rate on fracture strain

Experimental setup

TH Tensile Testing at Elevated Temperatures

Non-monotonic effect of temperature on displacement to fracture

Quasi-static Experiments from 20 to 300°C

Li, Roth and Mohr (2019)

Non-monotonic temperature response on plasticity!

New plasticity model needed to calculate local fields in fracture specimens!

Machine-Learning Based Johnson-Cook Plasticity Model

Li, Roth and Mohr (2019)

• Johnson-Cook plasticity:

$$\sigma_{y} = k_1 \left[\overline{\varepsilon_p}\right] \times k_2 \left[\overline{\dot{\varepsilon_p}}\right] \times k_3 [T]$$

• New approach:

$$\sigma_{y} = k_{1}[\overline{\varepsilon_{p}}] \times k_{NN}[\overline{\varepsilon_{p}}, \overline{\varepsilon_{p}}, T]$$

Mixed Swift-Voce strain hardening Scaling factor for temperature and strain rate

Central Idea:

Introduce a neural network function to describe the effects of strain rate and temperature

Structure of Neural Network

Li, Roth and Mohr (2019)

$$\sigma_y = k_1 \left[\overline{\varepsilon_p} \right] \times k_{NN} \left[\overline{\varepsilon_p}, \overline{\varepsilon_p}, T \right]$$

• $k_{NN}[\overline{\varepsilon_p}, \overline{\varepsilon_p}, T]$ feedforward network with 10:10:10 structure

Performance of Trained Model

Li, Roth and Mohr (2019)

• Training data for loading @ room temperature (three experiments)

ΤН

Performance of Trained Model

- Li, Roth and Mohr (2019)
- Training data for quasi-static loading @ ~10⁻³/s (six experiments)

ETH

ETH Validation of Trained Model Li, Roth and Mohr (2019)

• Training data for loading @ room temperature (three NT6 experiments)

ETHHardening model identified throughMachine LearningLi, Roth and Mohr (2019)

ETH

Loading Paths to Fracture

for quasi-static experiments on DP780 steel

Li, Roth and Mohr (2019)

Non-monotonic effect of temperature on fracture strain!

more than 100 experiments for different temperatures and strain rates

Machine-learning identified model

... but we need "big data"!

Summary

- Demonstrated non-monotonic effect of the temperature on the plasticity of dual phase steel
- Proposed a Neural-Network based temperature/strain rate term as a substitute of the classical Johnson-Cook term

 Implemented the model into material user subroutine of Abaqus/explicit, trained & validated the model

 Observed non-monotonic effect of the temperature on the fracture strain at RT

Acknowledgement

Important contributors

of. C. Roth

M. Gorji • Scientist

E. de Best • Engineer

G. Gary • Collaborator

X. Li • PhD Student (2017-today)

B. JordanPhD Student(2018-today)

 M. Dunand
 PhD Student (2009-2013)

S. MarcadetPhD Student (2011-2015)

B. Erice • Postdoc (2014-2016)

• Funding: MIT/ETH Industrial Fracture Consortium (2007-today)

ETH

Selected References

- 1. Dunand, M. & Mohr, D., 2014. Journal of the Mechanics and Physics of Solids Effect of Lode parameter on plastic flow localization after proportional loading at low stress triaxialities. *Journal of the Mechanics and Physics of Solids*, 66, pp.133–153. <u>http://dx.doi.org/10.1016/j.jmps.2014.01.008</u>
- 2. Erice, B., Roth, C.C. & Mohr, D., 2017. Stress-state and strain-rate dependent ductile fracture of dual and complex phase steel. *Mechanics of Materials*, pp.1–22. <u>http://dx.doi.org/10.1016/j.mechmat.2017.07.020</u>
- 3. Mohr, D. & Marcadet, S.J., 2015. Micromechanically-motivated phenomenological Hosford-Coulomb model for predicting ductile fracture initiation at low stress triaxialities. *International Journal of Solids and Structures*. https://doi.org/10.1016/j.ijsolstr.2015.02.024
- 4. Roth, C.C. & Mohr, D., 2015. Ductile fracture experiments with locally proportional loading histories. *International Journal of Plasticity*, 79, pp.328–354. <u>http://dx.doi.org/10.1016/j.ijplas.2015.08.004</u>
- 5. Roth, C.C., Gary, G. & Mohr, D., 2015. Compact SHPB System for Intermediate and High Strain Rate Plasticity and Fracture Testing of Sheet Metal. *Experimental Mechanics*, 55(9), pp.1803–1811. Roth,
- 6. Roth, C.C. & Mohr, D., 2014. Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets: Experiments and modeling. *International Journal of Plasticity*, 56, pp.19–44. https://doi.org/10.1016/j.ijplas.2014.01.003
- 7. Fras, T., Roth, C.C. & Mohr, D., 2018. Fracture of high-strength armor steel under impact loading, International Journal of Impact Engineering, 111, pp. 147-164, <u>https://doi.org/10.1016/j.ijimpeng.2017.09.009</u>
- 8. Grolleau, V., Roth, C.C., Lafilé, V., Galpin, B. & Mohr, D., 2019. Loading of mini-Nakazima specimens with a dihedral punch: Determining the strain to fracture for plane strain tension through stretch-bending, International Journal of Mechanical Sciences, 152, 329-345, <u>https://doi.org/10.1016/j.ijmecsci.2019.01.005</u>
- 9. Roth, C.C. & Mohr, D., 2018. Determining the strain to fracture for simple shear for a wide range of sheet metals, International Journal of Mechanical Sciences, 149, 224-240, https://doi.org/10.1016/j.ijmecsci.2018.10.007