
Olivier	NOUAILLETAS	
Post-doctorant	
Laboratoire	des	Fluides	Complexes	et	leurs	
Réservoirs	
	

david.gregoire@univ-pau.fr	 

University	Pau	&	Pays	Adour	
Geomechanics	&	Porous	media	(G2MP)	

LFCR,	UMR5150	–	IPRA,	FR2952	
Basque	Coast	campus,	Anglet,	France	

Côte basque, Anglet, France 

Aussois,	France 24/01/2018 

LFCR,	UMR5150	 IPRA,	FR2952	

MECAMAT 2019 
Rupture des Matériaux 

et des Structures 

Calibration	of	nonlocal	models	
for	quasi-brittle	materials	failure	prediction	

Pr.	David	Grégoire	
UPPA-ISABTP-IUF	



david.gregoire@univ-pau.fr	MECAMAT	2019	 24/01/2018	 2	

Outline	
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Non-local	models	for	quasi-brittle	failure	
Ø  Propagation	of	macrocracks	in	quasi-brittle	materials	implies	the	presence	of	a	

Fracture	Process	Zone	(FPZ)	
	
	
	
	
	
	

Ø  This	FPZ	leads	to	typical	phenomena	such	as	size	effects,	boundary	effects,	strain	
softening	etc.	

Ø  Non-local	interactions	appear	within	the	FPZ	and	the	material	points	cannot	be	
seen	as	independent	

Ø  It	may	change	transport	properties	and	the	FPZ	may	be	the	location	of	complex	
multi-physics	couplings	(adsorption,	crystallisation,	etc.)	

	 	 	 		

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	

macro	
crack	 FPZ	
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Non-local	models	for	quasi-brittle	failure	
Ø  Strain	softening	materials	

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	

(Non-local	models)	

The	characteristic	length	lc	needs	to	be	calibrated	

and	a	constitutive	law	needs	to	be	chosen	!	
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Non-local	models	for	quasi-brittle	concrete	failure	
Ø  Simple	concrete	model	

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	

(Mazars,	1986)	
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(Mazars,	1986)	

with	a	characteristic	length	

Remark:	all	the	parameters	have	to	be	calibrated	!	
Classical	values	of	the	model	parameters	are	provided	in	Mazars	(1986)	and	

Pijaudier-Cabot	et	al.	(1991)		
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Non-local	models	for	quasi-brittle	failure	
Ø  The	characteristic	length	must	vary	upon	failure	

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	
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Non-local	models	for	quasi-brittle	failure	
Ø  The	characteristic	length	must	vary	upon	failure	

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	

-	Interaction-based	non	local	model	
				Rojas-Solano	et	al.	(2013)	
				Pijaudier-Cabot	and	Grégoire	(2014)	

Empirical	solutions:	 Less	empirical	solutions:	
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Non-local	models	for	quasi-brittle	failure	
Ø  The	characteristic	length	must	vary	upon	failure	

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	

-	Interaction-based	non	local	model	
				Rojas-Solano	et	al.	(2013)	

Global	motivation	for	this	talk:	
Whatever	is	the	non-local	model	chosen,	
a	characteristic	length	has	to	be	identified,		

even	as	a	constant	parameter.	
	

Additionally,	this	characteristic	length	must	vary	
upon	failure…	
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	Pick	load	size	effect	laws	
	Softening	curves	of	different	specimen	sizes	(1,	3	or	4)	
	Example	of	calibration	failure	or	success	
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•  Indirect	calibration	methods	
	1)	Pick	load	size	effect	laws	

	 	 	 		

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	

Pick	load	size	effect	laws	should	not	be	used	alone	to	calibrated	model	parameters	
Commonly	performed:	only	notched	specimen,	only	3	sizes	

Size	effect	low	from:	
(Bažant,	1984)	

Small	size:	
strength	criterion	

Large	size:	LEFM	

LEFM	

Strength	criterion	

2	
1	
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•  Indirect	calibration	methods	
	2)	Softening	curve	(1	size)	

	 	 	 		

�A	model	cannot	be	calibrated	from	inverse	analysis	of	a	single	load	deflexion	curve.	
(Le	Bellégo	et	al.,	2003)	

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	
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Most	of	the	time,	no	problem	for	a	good	calibration	on	three	sizes…	
	

	 	 	 	 	…	but	things	get	more	difficult	for	four	sizes.	

(Le	Bellégo	et	al.,	2003)	

•  Indirect	calibration	methods	
	2)	Softening	curves	(3	sizes)	

	 	 	 		
(most	studies)	

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	
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•  Indirect	calibration	methods	
	2)	Softening	curves	(4	sizes)	

	 	 	 		

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	

(Grégoire	et	al.,	2013)		
see	also	(Hoover	et	al.,	2013)	

34	three	bending	tests	
+	51	characterisation	tests	
(Compressive	strength,	splitting	tensile	strength,	Young’s	modulus,	Poisson	ratio)	
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•  Indirect	calibration	methods	
	2)	Softening	curves	(4	sizes)	

	 		
Remark:	if	you	really	want	to	use	a	size	effect	law,	use	a	universal	one	with	notched	
and	unnotched	specimens	but	still	not	the	best	for	failure	model	calibration… 		

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	

(Grégoire	et	al.,	2013)		

Size	effect	law	from:	
(Bažant	and	Yu,	2009)	
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•  Indirect	calibration	methods	
	2)	Softening	curves	(4	sizes)	

	 	 	 		

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	

Perfect	for	model	calibration	but…	

(Grégoire	et	al.,	2013)		
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•  Indirect	calibration	methods	
	3)	Example	of	calibration	failure	– NL	model	with	constant	length	

	 	 	 		

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	

3	sizes	–	fifth	notched	–	not	so	bad	(and	may	have	been	better	fitted)	

Classical	non	local	model	with	constant	lc	

(Grégoire	et	al.,	2013)		
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•  Indirect	calibration	methods	
	3)	Example	of	calibration	failure	– NL	model	with	constant	length	

	 	 	 		

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	

4	sizes	–	fifth	notched	–	completely	lost	

Classical	non	local	model	with	constant	lc	

(Grégoire	et	al.,	2013)		
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•  Indirect	calibration	methods	
	3)	Example	of	calibration	failure	– NL	model	with	constant	length	

	 	 	 		

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	

4	sizes	– unnotched	–	even	worse	!	

Classical	non	local	model	with	constant	lc	

(Grégoire	et	al.,	2013)		
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•  Indirect	calibration	methods	
	3)	Example	of	calibration	success	–	Mesoscale	lattice	model	

	 	 	 		

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	

But	some	calibration	may	work	!!!	

(Grassl	et	al.,	2012)	

Mesoscale	lattice	model	
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•  Indirect	calibration	methods	
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•  Indirect	calibration	methods	
	3)	Example	of	calibration	success	– Thick	level	set	model	

	 	 	 		

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	

But	some	calibration	may	work	!!!	

(Parrilla	Gómez,	2017)	

Thick	level	set	(TLS)	
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•  Indirect	calibration	methods	
	3)	Example	of	calibration	success	– NL	model	with	varying	length 	
	 	 		

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	

But	some	calibration	may	work	!!!	

(Havlásek	et	al.,	2016)	

Integral	non-local	model	with	varying	Lc	

exp.	from	(Hoover	et	al.,	2013)	
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•  Direct	calibration	method	?	
	1)	Digital	image	correlation				

	 	 	 		

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	

e.g.	(Wu	et	al.,	2011)	(Alam	et	al.,	2012)	
	(Ł.	Skarżyński	and	J.	Tejchman,	2016)	

	

	Problems:			
	 	-	Continuous	DIC	generally	but	discontinuous	DIC	formulation	exists	
	 	 	 	e.g.		(Réthoré	et	al.,	2007),	(Grégoire	et	al.,	2009),	(Grégoire	et	al.,	2011)	
	 	-	No	information	about	non	local	interactions	
	 	-	Difficult	to	use	it	for	direct	model	calibration	

(Wu	et	al.,	2011)	
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•  Direct	calibration	method	?	
	2)	X-ray	tomography				

	 	 	 		

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	

e.g.	(Ł.	Skarżyński	and	J.	Tejchman,	2016)	
	

	Problem:			
	 	-	Postmortem	analysis	(no	evolution)	
	 	-	Still	difficult	to	use	it	for	direct	model	calibration	
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•  Direct	calibration	method	?	
	3)	Fracture	surface	roughness 	 	 	 		

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	

Dissipated	energy	
density	profile		

1)	Experimental	fracture	test	

2)	1D	non	local	model	failure	test	

3)	Direct	calibration	

4)	Structure	failure	analyses	

-	Based	on	the	assumption	that	the	large	majority	of	energy	is	dissipated	in	a	rough	crack		
-	Straight	forward	for	constant	characteristic	length	calibration	
-	Quite	unique	and	very	promising	but	needs	to	be	further	validated	

(Xenos	et	al.,	2015)	
	

Standard	
variation:	

Standard	variation	



david.gregoire@univ-pau.fr	MECAMAT	2019	 24/01/2018	 28	

Outline	
–  Introduction	and	context:	non-local	models	for	quasi-brittle	failure	
	

–  Indirect	calibration	methods	

–  Direct	calibration	method	?	

–  Toward	the	calibration	of	an	evolving	characteristic	length	

–  Conclusion	and	perspectives	

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	

	Digital	image	correlation	
	X-ray	tomography		
	Fracture	surface	roughness	

	Pick	load	size	effect	laws	
	Softening	curves	of	different	specimen	sizes	(1,	3	or	4)	
	Example	of	calibration	failure	or	success	

	Acoustic	emission	
	Mesoscale	modelling	
	Spatial	ecology	and	Ripley’s	functions	



david.gregoire@univ-pau.fr	MECAMAT	2019	 24/01/2018	 29	

•  Calibration	of	an	evolving	characteristic	length	
	1)	Acoustic	emission				

	 	 	 		

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	

e.g. 	(Landis,	1999)	(Granger	et	al.,	2007)	
	(Grégoire	et	al.,	2015)	(Saliba	et	al.,	2016)		

(Grégoire	et	al.,	2015)		

Unnotched	and	notched	specimen	

HN	 FN	 UN	
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•  Calibration	of	an	evolving	characteristic	length	
	2)	Acoustic	emission				

	 	 	 		

e.g. 	(Landis,	1999)	(Granger	et	al.,	2007)	
	(Grégoire	et	al.,	2015)	(Saliba	et	al.,	2016)		

(Grégoire	et	al.,	2015)		

Unnotched	and	notched	specimen	

HN	

Problem:		 	Not	so	much	points	!	
	 	 	(almost	nothing	prepick)	

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	
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•  Calibration	of	an	evolving	characteristic	length	
	2)	Mesoscale	modelling	

	

Heterogeneities	are	explicitly	meshed				
	 	 	 		

e.g. 	(Schlangen	et	Van	Mier,	1992)	(Delaplace	et	al.,	1996)	
	(Grassl	and	Jirásek,	2010)	(Grassl	et	al.,	2012)	

Concrete	

(Grassl	et	al.,	2012)	

Local	degrees	of	freedom	

Isotropic	damage	
model	for	ITZ	
and	mortar	

A	lot	of	damage	point	
may	be	identified	!	

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	
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•  Calibration	of	an	evolving	characteristic	length	
	2)	Mesoscale	modelling	

Consistent	and	predictive	in	term	of	global	response	!	
	 	 	 		 (Grassl	et	al.,	2012)	

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	
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•  Calibration	of	an	evolving	characteristic	length	
	2)	Mesoscale	modelling	

Consistent	and	predictive	in	term	of	local	response	!	
	 	 	 		

		damage	

Acoustic	emission	vs	lattice	model	

(Grégoire	et	al.,	2015)	

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	



david.gregoire@univ-pau.fr	MECAMAT	2019	 24/01/2018	 34	

•  Calibration	of	an	evolving	characteristic	length	
	2)	Mesoscale	modelling	

Consistent	and	predictive	in	term	of	local	response	!	
	 	 	 		

Acoustic	emission	vs	lattice	model	

(Grégoire	et	al.,	2015)	

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	
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•  Calibration	of	an	evolving	characteristic	length	
	2)	Mesoscale	modelling	

Consistent	and	predictive	in	term	of	local	response	!	
	 	 	 		

Problem:		How	interpreting	these	data	
in	a	way	that	we	can	identify	the	
characteristic	length	evolution	?	

Acoustic	emission	vs	lattice	model	

(Grégoire	et	al.,	2015)	

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	
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•  Calibration	of	an	evolving	characteristic	length	
	3)	Ripley’s	function:	a	spatial	ecology	tool	

	
We	want	to	characterize	how	microcracks	interact	from	damage	patterns	

that	start	randomly	and	then	localise	
	
This	has	been	performed	for	years	in	spatial	ecology:	

	 	 	 	(Ripley,	1977)	– Cell	migration	
	 	 	 	(Stamp,	1990)	–	Plant	spreading	
	 	 	 	(Diggle,	1991)	–	Disease	spreading	
	 	 	 	(Duncan,	1993)	–	Tree	spreading	
	 	 	 	(Dixon,	2002)	– Review	on	Ripley’s	function	
	 	 	 	(Tentelier	and	Piou,	2011)	– Anadromous	fish	migration	

	
and	more	recently	in	mechanics:	

	 	 	 	(Tordesillas	et	al.,	2012)	–	Diffuse	granular	failure	
	 	 	 	(Lefort	et	al.,	Eng	Fract	Mech,	2015)	– Concrete	failure	(this	work)	

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	
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•  Principle	of	Ripley’s	functions	

37	

r 

K(r) 

R1=10cm 

R1 

Average number of neighbours counted in the disk of radius R1: Nmoy,R1 = 0 
 
 
 

=> K(R1) = Nmoy,R1 / ρ = 0 

0,33 

L=1m 

H
=1

m
 

LxH 

1m 

0,04 0,06 

0,50 

Average density of points : ρ=9/(LxH)=9points/m2 

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	

(Lefort	et	al.,	Eng	Fract	Mech,	2015)	
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R1=10cm 

R2 

Average number of neighbours counted in the disk of radius R2 : Nmoy,R2 = 
 
 
 

=> K(R2) = Nmoy,R2 / ρ = 

L=1m 

H
=1

m
 

LxH 

1m 

0,78 

7 

R2=50cm 

38	

r 

K(r) 

•  Principle	of	Ripley’s	functions	

(Lefort	et	al.,	Eng	Fract	Mech,	2015)	

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	
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r 

L(r)-r 

homogeneous distribution 

r 

K(r) 
LxH 

homogeneous 
distribution 
K(r)=π.r2 

•  Principle	of	Ripley’s	functions	

(Lefort	et	al.,	Eng	Fract	Mech,	2015)	

Non-local	models	 Indirect	calibration	 Direct	calibration	 Evolving	charac.	length	 Conclusion	
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(Lefort	et	al.,	Eng	Fract	Mech,	2015)	

•  Typical	shapes	of	L(r)	functions	
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Random points pattern Points concentrated in 9 discs  Points concentrated in 1 disc 

R=10mm	
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•  Experimental	Campaign	vs	Numerical	Model	
–  Taking	into	account	the	energy…	
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1J 

3,5J 
7J 

DATA 

Point pattern analyzed 
with Ripley’s functions 

5mm 
intensity coding 
(here 1J=1point) 

1,3J 
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meso-scale
region

Load	vs	CMOD	

Ripley’s	modified	function	(L=H=0,4m)	

Position	of	events	occurring	during	the	time	step	

Abscissa	of	the	maximum	

42	

EXPERIMENTAL	
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SIMULATION	vs	EXPERIMENTAL	
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SIMULATION	vs	EXPERIMENTAL	
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SIMULATION	
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•  Comparision	between	unnotched	and	notched	specimen	
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(Lefort	et	al.,	Eng	Fract	Mech,	2015)	
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•  Direct	tension	
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(Lefort	et	al.,	Eng	Fract	Mech,	2015)	
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Outline	
–  Introduction	and	context:	non-local	models	for	quasi-brittle	failure	
	

–  Indirect	calibration	methods	

–  Direct	calibration	method	?	

–  Toward	the	calibration	of	an	evolving	characteristic	length	

–  Conclusion	and	perspectives	
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	Pick	load	size	effect	laws	
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Conclusion	

–  Indirect	calibration	methods	

–  Direct	calibration	methods	

–  Toward	the	calibration	of	an	evolving	characteristic	length	
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Ø  Digital	image	correlation	and	X-ray	tomography	are	not	yet	enough	for	calibration	
Ø  Fracture	surface	roughness	seems	very	promising	

Ø  Only	universal	USEL	law	may	be	used	but	softening	curves	are	far	from	preferable	
Ø  Comprehensive	database	now	exist:	PLEASE	USE	IT	!!!	

Ø  The	mesoscale	approach	is	consistent	globally	and	locally	
Ø  Ripley’s	 functions	provide	 indicators	of	 the	 randomness	of	a	

distribution	of	events	
Ø  An	 varying	 characteristic	 length	 may	 be	 directly	 extracted	

using	such	Ripley’s	functions	

???	
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