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Objectives of the work 

• The aim of our work is the development of an efficient numerical tool 
in EDF R&D’s industrial finite element free software Code_Aster for 
the simulation of fluid-driven fracture networks in porous rock 
formations. 

 
• In particular, we would like to stress the following peculiarities: 
 - simulate a full hydromechanical coupling 
 - extend our model to 3D geometries 
 - handle complex crack geometries 
 - simulate crack-propagation on non-predefined paths 
 - include the possibility to model crack networks 

 
• Wide range of applications: 
 - 𝐶𝑂2 geological storage 
 - nuclear waste geological storage 
 - recovery of hydrocarbons in fractured reservoirs 
 - deep geothermal energy 

 
 
 

M. Faivre, Ph.D LABEX-GéoRessources 2012-2016, Modélisation du comportement hydrogéomécanique d’un réseau de failles  
sous l’effet des variations de l’état de contrainte. 
B. Paul, Ph.D GéoRessources 2013-2016, Modélisation de la propagation de fractures hydrauliques par la méthode des 
Éléments finis étendus 
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Context and applications 

source: Total  source: Nature 

• Hydraulic fracturing (left) and Enhanced Geotermal Systems (right) 
    generate the most dense and extended fracture network 
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Context and applications 

source: DNVGL  

• 𝐶𝑂2 geological storage 
    the propagation of fluid driven cracks constitutes a threat 
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• T. Mohammadnejad, A. R. Khoei, Hydro-mechanical modeling of cohesive crack propagation in multiphase porous media using the extended 
finite element method, Int. J. Numer. Meth. Engng. 2013 

Context and applications 

• Preferential flow in the fractures 
• Hydromechanical coupling between the 

fracture and the surrounding porous media 
• Multiple phases 

• Crack extension 
• Crack bifurcation 
• Heat discharge 
• Fluid lag (Lecampion 2007) 
• Damage process/plasticity 

(Wang 2009) 

• Hydromechanical coupling 
• Mass exchanges 
• Heat transfers 

(Mohammadnejad 2013) 
• Dynamics 
• Multiple phases (Younes 

2014) 
• Inhomogeneity/anisotropy 

• S.Y. Wang, L. Sun, A.S.K. Au, T.H. Yang, C.A. Tang, 2D-numerical analysis of hydraulic fracturing in heterogenenous geo-materials, Construction 
and Building Materials 2009 

• A. Younes, P. Nunez, A. Makradi, Q. Shao, L. Bouhala, S. Belouettar, An xfem model for cracked porous media: effects of fluid flow and heat 
transfer, Int. J. Fracture 2014 

• B. Lecampion, E. Detournay, An implicit algorithm for the propagation of a hydraylic fracture with a fluid lag, Comp. Meth. Appl. Meth. Eng. 2007 
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Context and applications 
• Analytical asymptotic solutions exist for the propagation of plane fluid-driven cracks in elastic 

brittle materials: 

The penny shaped model (Adachi 2007) The P3D model (Adachi 2010) 

• In particular, the analytical solution predicts distinct fracture profile depending on the 
propagation regime: 

viscosity dominated regime                𝑤~𝑟
2

3  

toughness dominated regime            𝑤~𝑟
1

2  

• The existence of these asymptotic regimes has been confirmed experimentally (Bunger 2008). 

• J. Adachi, E. Siebrits, A. Pierce, J. Desroches, Computer simulation of hydraulic fractures, Int. J. Rock. Mech. & Mining Sciences 2007 
• J. Adachi, E. Detournay, A. Pierce, Analysis of the classical pseudo-3d model for hydraulic fracture with equilibrium height growth accross stress 

barriers, Int. J. Rock. Mech. & Mining Sciences 2010 

𝑟 : distance from the tip 

• A. Bunger, E. Detournay,  Experimental validation of the tip asymptotics for a fluid-driven crack, J. Mech Phys. Solids 2008 

𝑤 

𝑤 
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Meshing discontinuities 

1

1 
source: IFPEN  
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The eXtended Finite Element Method 

• In order to model continous media intersected by arbitrary discontinuities, we favor the 
XFEM, which consists in introducing additional degrees of freedom associated to 
discontinous shape functions. 

 
 
 

• The  discontinuities  are  located  in  the  mesh  
     thanks to level set functions (level-set-method). 

 
−𝟏 

+𝟏 

The generalized Heaviside function 

𝒍𝒔𝒏 = 𝟎 

𝒍𝒔𝒏 > 𝟎 
𝒍𝒔𝒏 < 𝟎 

𝒍𝒔𝒕 > 𝟎 
𝒍𝒔𝒕 < 𝟎 

𝒍𝒔𝒕 = 𝟎 

Г 

Ω 

𝑙𝑠𝑛: normal level set    𝑙𝑠𝑡: tangential level set 
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The eXtended Finite Element Method 

FEM classique 

XFEM 

Classical FEM 

 No more need for a conforming mesh 
 No need to generate a new mesh each times the crack evolves 
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The eXtended Finite Element Method 

FEM classique 

XFEM 

Classical FEM 

 No more need for a conforming mesh 
 No need to generate a new mesh each times the crack evolves 

M. Siavelis, Ph.D IFPEN, Modélisation numérique X-FEM de grands glissements avec frottement le long d'un réseau de discontinuités, 2011 

 
Basin modeling with XFEM (Siavelis 2011) 

• Extension of this approach to branched discontinuities: 

𝒍𝒔𝒏𝟏 = 𝟎 
𝒍𝒔𝒏𝟐 = 𝟎 

𝒍𝒔𝒏𝟑 = 𝟎 

Layered normal level set fields 
modeling branched discontinuities 
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The eXtended Finite Element Method 

Curved branched interfaces (Paul, 2016) 

• B. Paul, M. Ndeffo, P. Massin, N. Moës, An integration technique for 3D curved cracks and branched discontinuities within the 

eXtended Finite Element Method, Finite Element Analysis and Design 2016 

• M. Ndeffo, Ph.D Ecole Centrale de Nantes, Modélisation numérique de la propagation de fissures avec des éléments 2D et 3D 

quadratiques, 2015 

• The enrichment strategy we rely on has been developped by Ndeffo (Ndeffo 2015). It allows to 
confine the conditioning issues.  
 

• We developped a quadratic integration procedure for 3D curved branched interfaces in the 
framework of the eXtended Finite Element Method. The overall procedure is the object of a 
publication (Paul,  2016). We obtained optimal convergence rates in 2D and 3D for the 
resolution of the interface. 

approximation mesh integration mesh and amplified deformed shape 
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Notations 

𝒏 𝑞1 

𝑞2 

𝑝𝑓 

𝜕Ω 

Ω 

𝑝 𝑢𝑛  

Porous matrix Ω 

Fluid-filled fracture Г 

• The aperture or normal displacement jump is denoted 𝑢𝑛  
• The pressure of the fluid in the fracture is denoted 𝑝𝑓 

• The fluid fluxes from the fracture to the lower and upper part of the surrounding 
porous matrix are denoted 𝑞1 and 𝑞2  

• The displacements are denoted 𝒖 
• The pore pressure is denoted 𝑝 

Г 
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3 distinct approximation spaces 

• The displacement field 𝒖 is quadratic and enriched. 

𝒖 

𝒖 

𝒖 

𝒖 

𝒖 

𝑢 

Г 

𝒖 𝒖 

𝒖 
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3 distinct approximation spaces 

• The displacements field 𝒖 is quadratic and enriched. 

• The pore pressure field 𝑝 is linear and enriched. 

𝒖 

𝒖 

𝒖 

𝒖 

𝒖, 𝑝 

𝑢 

Г 

𝑝 

Г 

𝒖, 𝑝 𝒖, 𝑝 

𝒖, 𝑝 
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3 distinct approximation spaces 

• The displacements field 𝒖 is quadratic and enriched. 

• The pore pressure field 𝑝 is linear and enriched. 

𝒖 

𝒖 

𝒖 

𝒖 

 as demonstrated by Ern (2009), this mixed interpolation is necessary to reduce the 
oscillations in the numerical solution. 

• A. Enr, S. Meunier, A posteriori error analysis of euler-galerkin approximations to coupled elliptic-parabolic problems, ESAIM: 

M2AN 2009 

𝒖, 𝑝 

𝑢 

Г 

𝑝 

Г 

𝒖, 𝑝 𝒖, 𝑝 

𝒖, 𝑝 
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3 distinct approximation spaces 

20 

• The fields associated to the fluid-filled fracture 𝑝𝑓, 𝑞1, 𝑞2, λ  are carried by the vertex 

nodes of the edges interstected by the discontinuity. 
 

Г 

: node carrying the fields 
associated to the fluid-filled 
fracture. 
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3 distinct approximation spaces 

21 

• E. Béchet, N. Moës, B. Wohlmuth, A stable Lagrange multipliers space for stiff interface conditions within the Extended Finite Element Method, 
Int. J. Numer. Meth. Engng. 2009 

• S. Géniaut, P. Massin. N. Moës, A stable 3D contact formulation using  XFEM, European Journal of Computational Mechanics, 2012 

• The fields associated to the fluid-filled fracture 𝑝𝑓, 𝑞1, 𝑞2, λ  are carried by the vertex 

nodes of the edges interstected by the discontinuity. 
 

• In order to reduce the approximation space and satisfy the LBB stability condition 
(Béchet 2009), equality relations are prescribed accross the discontinuity based on the 
approach of Géniaut (2012). 

Г 

Λ1 
Λ2 Λ3 Λ4 

: intersected edge whose 
vertex nodes are submitted to 
equality relations for the 
fields associated to the fluid-
filled fracture. 

: node carrying the fields 
associated to the fluid-filled 
fracture. 
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𝒖𝒏  

𝑞2 

𝑞1 

Fluid flow in the fracture 

Crack extension Fracture junction 

Mass exchanges between the 
fracture and the porous matrix 

and in the porous matrix 

Hydromechanical coupling 

Crack reorientation 

𝑝𝑓 
𝑝𝑓 

𝑝𝑓 

3D coupled HM-XFEM modeling with cohesive zone model and applications to non planar hydraulic fracture propagation and multiple 
hydraulic fractures interference, B. Paul, M. Faivre, P. Massin, R. Giot, D. Colombo, F. Golfier, A. Martin, Comput. Methods Appl. Mech. 
Engrg. Vol. 342 Pages 321–353, 2018. 

https://www.sciencedirect.com/science/article/pii/S0045782518303955
https://www.sciencedirect.com/science/article/pii/S0045782518303955
https://www.sciencedirect.com/science/article/pii/S0045782518303955
https://www.sciencedirect.com/science/article/pii/S0045782518303955


Hydromechanical coupling 
in the porous matrix 



Hydromechanical coupling in the porous matrix 

𝐷𝑖𝑣  𝝈′ − 𝑏𝑝𝟏 + [ 1 − φ 𝜌𝑠 + φ𝜌𝑙]𝒈 = 𝟎 

• We work under the assumption of small strains. 
 

• The hydromechanical coupling in the porous matrix is handled within the 
framework of the generalized Biot theory (Coussy 2004). 
 

 
 
 
 
 
 
 

• The solid matrix is saturated by the monophasic interstitial fluid. The fluid then 
fills a fraction φ of the entire volume. 
 

• The global equilibrium equation reads: 
 

 
• The solid matrix is supposed elastic: 

Solid matrix characteristics: 
 Density 𝝆𝒔  
 Young’s modulus 𝑬 
 Poisson ratio 𝝂 
 Porosity 𝝋 
 Permeability 𝒌 

 
 

𝝈′ =
𝐸

1 + ν
(𝜺 +

ν

1 − 2ν
𝑇𝑟 𝜺 𝟏) 

Interstitial fluid characteristics: 
 Density  𝝆𝒍 
 Dynamic viscosity μ 

 

(Hooke’s law) 

b: Biot coefficient 

• O. Coussy, Poromechancis, John Wiley & Sons 2004 
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𝑢𝑛  

Fluid flow in the fracture 



• We use the cubic law to model the fluid flux in the 
fractures. This is justified by Iwai et al (1980). 
 
 

• The fluid flux in the fracture 𝑾 then only depends 
on the fracture aperture and on the pressure 
gradient: 

𝒖𝒏  

𝑝𝑓 

Fluid flow in the fracture 

• K.J.E. Iwai, P.A. Witherspoon, J.S.Y. Wang, J.E. Gale, Validity of cubic law for fluid flow in a deformable rock fracture, Water Ressources 1980 

𝑾 =
−ρ 𝑢𝑛

3

12μ
𝜵𝑝𝑓 

26 

𝑾 

19 



𝑞2 

𝑞1 

Mass exchanges between the 
fracture and the porous matrix 

and in the porous matrix 
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Fluid exchanges between the fracture and the 
porous matrix and in the porous matrix 

28 

Fluid flow in the fracture 

Fluid flow in the porous matrix 

• We use Darcy’s law to model the fluid 
flow in the porous matrix 𝑴: 

 
• Mass conservation for the fluid in the 

porous matrix: 

• Flow in the fracture: 
 
• Mass conservation for the fluid in the porous 

matrix: 

𝑴 = ρ𝑙
𝑘

μ
(−𝜵𝑝 + ρ𝑙𝒈) 

𝜕(ρ𝑙φ 1 + ε𝑣 )

𝜕𝑡
+ 𝐷𝑖𝑣(𝑴) = 0 

𝑾 =
−ρ 𝑢𝑛

3

12μ
𝜵𝑝𝑓 

𝜕(ρ𝑙 𝑢𝑛 )

𝜕𝑡
+ 𝐷𝑖𝑣 𝑾 + 𝑞1 + 𝑞2 = 0 
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Fluid exchanges between the fracture and the 
porous matrix and in the porous matrix 

𝑝 

Г 

𝑝 

Г 

𝑝𝑓 

𝑝(Г2) 

𝑝(Г1) 

𝑝𝑓 

• Finally, at each fracture wall, we impose the 
continuity of the fluid pressure: 
 
 

 

• This condition is weakly enforced: 
 
 
 

𝑞2 

𝑞1 

Г1 

Г2 

𝑝𝑓 

𝑝 

𝑝 

𝑝 = 𝑝𝑓 on Г1,2 

 𝑝 − 𝑝𝑓 𝑞𝑖
∗𝑑Г𝑖Г𝑖

= 0    ∀ 𝑞𝑖
∗ ∈ 𝑀0    for   𝑖 ∈ {1, 2} 

• The pore pressure on both sides of the discontinuity is then connected to 𝑝𝑓:  

 

• Other models (Wang 2015) suggests that fluxes 𝑞1 and 𝑞2 are proportional to the 
pressure gap at the fracture walls: 𝑞𝑖 ∝ [𝑝𝑓 − 𝑝 Г𝑖 ]. 

 • H. Wang, Numerical modeling of non-planar hydraulic fractures propagation in brittle and ductile rocks using XFEM with cohesive zone method, Journal of 
Petroleum Science and Engineering 2015 

22 

𝑀0: set of functions kinematically admissible for the fields associated to the fracture 



Enrichment strategy for the pore pressure field 

Г 

• A. Hansbo, P. Hansbo, An unfitted finite element method, based on nitsche’s method for elliptic interface problems, Comp. Meth. Appl. Mech. Engng. 2000 
• M. Ndeffo, P. Massin, N. Moës, A. Martin and S. Gopalakrishnan, On the construction of approximation space to model discontinuities and cracks with linear and 

quadratic extended finite elements, Adv. Model. and Simul. in Eng. Sci., 4:6, https://doi.org/10.1186/s40323-017-0090-3, 51 Pages, 2017. 

• N. Moës, M. Cloirec, P. Cartraud, J.F. Remacle, A computational approach to handle complex microstructure geometries, Comp. Meth. Appl. Mech. Engng. 2003 

• N. Sukumar, D.L. Chopp, N. Moës and T. Belytschko, Modeling holes and inclusions by level sets in the extended finite element method, Comp. Meth. Appl. 
Mech. Engng. 2001 

• Sukumar et al (2001) proposed to enrich the pore 
pressure field with 𝑎𝑏𝑠 𝑙𝑠𝑛 .  

• Moës et al (2003) then suggested to use Ridge 
enrichment functions. 

• Hansbo and Hansbo (2000) suggested to let a strong discontinuity and then force the continuity. 

𝑎𝑏𝑠(𝑙𝑠𝑛) 

Г 

𝑅𝑖𝑑𝑔𝑒 

Г 

 bad convergence properties. 

 allows to recover optimal convergence rates. 

 allows to recover optimal 
convergence rates. 

Г 
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Fluid exchanges between the fracture and the 
porous matrix and in the porous matrix 

 Fully coupled hydromechanical model 

𝑸 

𝑏 = 1 

𝐸 = 5800 𝑀𝑃𝑎 

𝐺𝑐 = 9000 𝑃𝑎.𝑚 
σ𝑐 = 0,5 𝑀𝑃𝑎 

ν = 0,2 
φ = 0,1 
𝑘 = 10−18𝑚2 

1
𝐾𝑙
 = 5. 10−10𝑃𝑎−1 

μ = 10−3𝑃𝑎. 𝑠 

Material parameters 

𝑡 

𝑄 

100𝑠 
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Fluid exchanges between the fracture and the 
porous matrix and in the porous matrix 

(Pa) 

 Fully coupled hydromechanical model 
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La méthode des éléments finis 

Crack extension 

𝑝𝑓 



Cohesive zone model 

• To govern the crack extension and opening, we adopt a cohesive zone model. 

• The crack surface is then divided into 3 zones: 

𝑝𝑓 

• The cohesive traction is directly related to the 
displacement jump via a linear mixed 
cohesive law. 
 

• Once the cohesive traction reaches the critical 
stress σ𝑐 , the damage process starts 
irreversibly. 
 

• The crack extension is thus allowed 
throughout a mechanical load step. 

Fracture processing 
 zone 

Adherent 
 zone 

Traction free  
zone 

δ𝑐 

σ𝑐 

Traction-aperture relation: 
𝑡′𝑐 

𝑢𝑛  

𝒕′𝒄 -   The adherent zone is undamaged. 
 

- In the fracture processing zone, 
cohesive traction efforts 𝑡′𝑐  resist to 
the crack opening. 
 

- The traction free zone is fully 
openened. 

27 



Cohesive zone model 
• To include the cohesive zone in our model, we adopt the « mortar » formalism 

developped by Ferté (2016). 
 

• The displacements jump 𝒘 and the cohesive traction 𝝀 are introduced as new unknowns 
of the problem discretized over the same approximation space as 𝑝𝑓, 𝑞1 and 𝑞2, adapted 

to the fracture. 
 

• G. Ferté, P. Massin, N. Moës, 3D crack propagation with cohesive elements in the extended finite element method, Comput. Meth. Appl. Mech. Eng., 2016 

𝐸 𝒖,𝒘, 𝝀  =  
1

2
 𝜺 𝒖 :𝑪: 𝜺(𝒖)𝑑Ω
Ω

  −    𝒕. 𝒖𝑑Г𝑡Г𝑡
  +   П(𝒘, 𝝀)𝑑Г𝑐Г𝑐

 

cohesive energy 

δ𝑐 

𝝀 

𝒘 

σ𝑐 

Г𝑐 

• The total energy of the system is then: 

external loads elastic energy 

Λ1 
Λ2 Λ3 

Λ4 

28 



Weak formulation of the mechanical problem 

 𝝈 𝒖 : 𝜺(𝒖∗)𝑑Ω
Ω

− 𝒕. 𝒖∗𝑑Г𝑡
Г𝑡

+ 𝝁. 𝒖∗ 𝑑Г𝑐
Г𝑐

= 0    ∀𝒖∗ ∈ 𝑼0 

ℒ 𝒖,𝒘, 𝝀, 𝝁 =
1

2
 𝜺 𝒖 : 𝑪: 𝜺(𝒖)𝑑Ω
Ω

−  𝒕. 𝒖𝑑Г𝑡Г𝑡
+ П(𝒘, 𝝀)𝑑Г𝑐Г𝑐

+  𝝁. ( 𝒖 − 𝒘)𝑑Г𝑐Г𝑐
 

 𝝁∗. ( 𝒖 − 𝒘)𝑑Г𝑐
Г𝑐

= 0    ∀𝝁∗ ∈ 𝑴𝟎 

 𝒘∗. (𝝁 − 𝒕𝒄)𝑑Г𝑐
Г𝑐

= 0    ∀𝒘∗ ∈ 𝑴𝟎 

 −𝝀∗.
(𝝀 − 𝒕′𝒄)

𝑟
𝑑Г𝑐

Г𝑐

= 0    ∀𝝀∗ ∈ 𝑴𝟎 

• The four optimality conditions are: 

(global equilibrium equation) 

(displacement jump projection) 

(total cohesive stress projection) 

(interfacial law) 

• 𝝁 is an additional Lagrange multiplier discretized over the same space as 𝑝𝑓, 𝑞1 and 𝑞2. 

• In order to minimize this energy, we introduce the Lagrangian: mortar term 

• Under the asumption of Biot effective stress:  
𝝈 = 𝝈′ − 𝑏𝑝𝟏 

𝒕𝒄 = 𝒕′𝒄 − 𝑝𝑓𝒏 
 

29 



Г𝑐 

Ω 

𝜕Ω 𝑀𝑒𝑥𝑡 Г𝐹 

𝑊𝑒𝑥𝑡 

Г𝑓 

Г1 

Г2 
𝑝𝑓 

Г𝑢 
𝑞2 

𝑞1 

Г𝑡 

𝒕 

𝒏 

Г𝑝 

Loadings and boundary conditions 

Г𝑓 : inlet of the fracture Г𝑐 subject to a prescribed flux 𝑊𝑒𝑥𝑡  

Г𝑡 : boundary of Ω subject to a prescribed stress 𝒕 

Г𝑢 : boundary of Ω subject to prescribed displacements  

Г𝑝: boundary of Ω subject to a prescribed pore pressure  

Г𝐹 : boundary of Ω subject to a prescribed external flux 𝑀𝑒𝑥𝑡 

30 



Weak formulation of the hydromechanical problem 

The mass conservation equations are discretized in time with a θ-scheme. 

 𝑝 − 𝑝𝑓 𝑞𝑖
∗𝑑Г𝑖Г𝑖

 =0   ∀∈ 𝑞𝑖
∗𝑀0    for   𝑖 ∈ {1, 2} 

−  
𝑤+ − 𝑤−

Δ𝑡
𝑝𝑓

∗𝑑Г𝑐
Г𝑐

+ θ 𝑾+. 𝜵𝑝𝑓
∗𝑑Г𝑐

Г𝑐

+ 1 − θ  𝑾−. 𝜵𝑝𝑓
∗𝑑Г𝑐

Г𝑐

=  𝑊𝑒𝑥𝑡𝑝𝑓
∗𝑑Г𝑓

Г𝑓

 

+θ 𝑞1
+𝑝𝑓

∗𝑑Г1
Г1

+ 1 − θ  𝑞1
−𝑝𝑓

∗𝑑Г1
Г1

+ θ 𝑞2
+𝑝𝑓

∗𝑑Г2
Г2

+ 1 − θ  𝑞2
−𝑝𝑓

∗𝑑Г2
Г2

  ∀∈ 𝑝𝑓
∗𝑀0 

• Mass conservation in the fluid-filled cohesive fracture: 

• Mass conservation in the porous matrix: 

• Pressure continuity condition at the fracture walls: 

−  
𝑚𝑤

+ −𝑚𝑤
−

Δ𝑡
𝑝∗𝑑Ω

Ω

+ θ 𝑴+. 𝜵𝑝∗𝑑Ω
Ω

+ 1 − θ  𝑴−. 𝜵𝑝∗𝑑Ω
Ω

=  𝑀𝑒𝑥𝑡𝑝
∗𝑑Г𝐹

Г𝐹

 

−θ 𝑞1
+𝑝∗𝑑Г1

Г1

− 1 − θ  𝑞1
−𝑝∗𝑑Г1

Г1

− θ 𝑞2
+𝑝∗𝑑Г2

Г2

− 1 − θ  𝑞2
−𝑝∗𝑑Г2

Г2

  ∀∈ 𝑝∗𝑃0 

with 𝑤+ − 𝑤−=ρ𝑙
+ 𝑢𝑛

+ − ρ𝑙
− 𝑢𝑛

− 

with 𝑚𝑤
+ −𝑚𝑤

−=ρ𝑙
+φ+(1 + ε𝑣

+) − ρ𝑙
−φ−(1 + ε𝑣

−) 
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Validation 

𝑏 = 0,75 

𝐸 = 17 𝐺𝑃𝑎 

𝐺𝑐 = 120 𝑃𝑎.𝑚 

σ𝑐 = 1,25 𝑀𝑃𝑎 

ν = 0,2 

φ = 0,2 

𝑘 = 10−16𝑚2 

1
𝐾𝑙
 = 0 𝑃𝑎−1 

μ = 10−4𝑃𝑎. 𝑠 

Material parameters 

• M. Faivre, B. Paul, F. Golfier, R. Giot, P. Massin, D. Colombo, 2D coupled HM-XFEM modeling with cohesive zone model and applications to fluid-driven 
fracture networks, Engineering Fracture Mechanics, 2016 

• A. P. Bunger, E. Detournay, D. I. Garagash, Toughness dominated hydraulic fracture with leak-off, International Journal of Fracture, 2005 

• We only present the radial case, the 2D case is abundantly documented in Faivre, Paul (2016) 

𝑸 

σ0 

σ0 

𝑄 = 0,005 𝑚3. 𝑠−1 

σ0 = 3,7 𝑀𝑃𝑎 

𝒦 = 4
𝐺𝑐
π

1 − ν2

3𝑄𝐸μ

1
4 

 𝒞 = 2𝐶𝐿
𝐸𝑡

12(1 − ν2)μ𝑄3

1
6 

 

Loadings 

• We perform an analytical validation of our model based on 
the penny shaped model depicted in Bunger (2005). 

• Depending on two dimensionless parameters 𝒞 and 𝒦, we identify the propagation 
regime (tougness dominated or viscosity dominated) : 
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Determination of the leak-off coefficient (r=3,2m)  

Equivalent leak-off coefficient 

𝑔 𝑟, 𝑡 =
2𝐶𝐿

𝑡 − 𝑡0(𝑟)
 

𝑡0 𝑟 : time it takes for the fracture to reach 𝑟 

𝐶𝐿: leak-off coefficient 

𝑔 𝑟, 𝑡 : fluid flux transiting from the fracture  
to the porous matrix per unit area 



mesh used pore pressure and amplified deformed shape 

Validation 
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Crack Profile at t=8s 

Numerical results 

Analytical solution 

(Pa) 
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Crack reorientation 

𝑝𝑓 



𝒍𝒔𝒏 = 𝟎 
𝑝𝑓 

𝒍𝒔𝒕 = 𝟎 

crack front 

cohesive 
crack front 

𝒕′𝒄 

: adherent or undamaged zone  

35 

Potential crack surfaces 



𝒍𝒔𝒏 = 𝟎 
𝑝𝑓 

𝒍𝒔𝒕 = 𝟎 

crack front 

cohesive 
crack front 

𝒕′𝒄 

: adherent or undamaged zone  

 potential crack surface 

β 

35 

Potential crack surfaces 



Potential crack surfaces 

𝒍𝒔𝒏 = 𝟎 
𝑝𝑓 

𝒍𝒔𝒕 = 𝟎 

crack front 

cohesive 
crack front 

𝒕′𝒄 

: adherent or undamaged zone  

• G. Ferté, P. Massin, N. Moës, 3D crack propagation with cohesive elements in the extended finite element method, Comput. Meth. Appl. Mech. Eng., 2016 

 potential crack surface 

• Based on the work of Ferté (2016), we propose a procedure for the update of the 
potential crack surface. 

β 
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• According to Ferté (2016), we can still define a 𝐽-integral in the context of cohesive zone models: 

• G. Ferté, P. Massin, N. Moës, 3D crack propagation with cohesive elements in the extended finite element method, Comput. Meth. Appl. Mech. Eng., 2016 

• Furthermore: 

Stress intensity factors with a cohesive zone model 

• Finally, the stress intensity factors are identified as: 

𝐾𝐼
2 = −

𝐸

1 − ν2
 

𝜕 𝑢𝑛
𝜕𝜃

. (𝑡′𝑐,𝑛 − 𝑝𝑓)𝑑Г𝑐
Г𝑐

 

𝐾𝐼𝐼𝐼
2 = −2μ 

𝜕 𝑢𝑏
𝜕𝜃

𝑡′𝑐,𝑏𝑑Г𝑐
Г𝑐

 

𝐾𝐼𝐼
2 = −

𝐸

1 − ν2
 

𝜕 𝑢𝑡
𝜕𝜃

𝑡′𝑐,𝑡𝑑Г𝑐
Г𝑐

 

𝐽 = − 𝒕𝒄. 𝛻 𝒖 . 𝜽𝑑Г𝑐
Г𝑐

 

𝐽 = 𝐺 =
1 − ν2

𝐸
𝐾𝐼

2 + 𝐾𝐼𝐼
2 +

1

2μ
𝐾𝐼𝐼𝐼

2 

𝜃 is a virtual extension of the crack: 

𝜽 

𝒏 

𝒕 
𝒃 
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Reorientation angle 

• F. Erdogan, G.C. Sih, On the crack extension in plane loading and transverse shear, Journal Basic Engng 1963 

β = 2arctan
1

4
𝐾𝐼

𝐾𝐼𝐼
 − 𝑠𝑖𝑔𝑛(𝐾𝐼𝐼)

𝐾𝐼
𝐾𝐼𝐼
 

2

+ 8  

• We adopt the maximum hoop stress criterion (Erdogan and Sih 1963): 

 it is expressed only in terms of the stress intensity factors 𝐾𝐼 and 𝐾𝐼𝐼 

 it depends on global energetic quantities 

β = 2arctan
1

4

1 + 𝑥𝐼 − (1 − 𝑥𝐼𝐼𝐼)
𝑝

𝑥𝐼𝐼
− 𝑠𝑖𝑔𝑛(𝐾𝐼𝐼)

1 + 𝑥𝐼 − (1 − 𝑥𝐼𝐼𝐼)
𝑝

𝑥𝐼𝐼

2

+ 8  

𝑥𝑖 =
𝐾𝑖

𝐾𝐼 + 𝐾𝐼𝐼 + 𝐾𝐼𝐼𝐼
 𝑝 =

π − 5ν

4
 

• D. Haboussa, Modélisation de la transition traction-cisaillement des métaux sous choc par la X-FEM,  PhD INSA de Lyon 2012 

• We do not account for the tilt. If we had, we would have got (Haboussa 2012): 

with and 
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cohesive crack 
front at the 

instant 𝑛 

Equilibrium 
cohesive crack 

front at the 
instant 𝑛 + 1 

Update 𝑙𝑠𝑡 and 
compute the 

reorientation angle β  

 Update 𝑙𝑠𝑛 
from the 
previous 

 
 cohesive 

crack front 

crack front at the 
instant 𝑛 + 1 

 Extension of 
the potential 
crack surface 

 
  

: cohesive crack : potential crack surface 

Equilibrium 

Procedure for the propagation on non-predefined paths: 
an implicit approach 
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cohesive crack front 
at the instant 𝑛 



Competing nearby cracks 
𝑳 = 𝟏𝟎𝐦 

𝑳
=

𝟏
𝟎
𝐦

 

𝑸 𝑸 

𝑑1 

𝑸 

𝑸 

Pore pressure and amplified deformed shape 

Pore pressure and amplified deformed shape 

𝑑2 𝑄 = 0,0003 𝑚2. 𝑠−1 

𝑏 = 0,8 

𝐸 = 5800 𝑀𝑃𝑎 

𝐺𝑐 = 900 𝑃𝑎.𝑚 

σ𝑐 = 1,0 𝑀𝑃𝑎 

ν = 0,2 
φ = 0,1 

𝑘 = 10−15𝑚2 

1
𝐾𝑙
 = 5. 10−10𝑃𝑎−1 

μ = 10−3𝑃𝑎. 𝑠 

Material parameters 
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𝑑1 = 2,5𝑚 

𝑑2 = 1,5𝑚 



𝑳 = 𝟏𝟎𝐦 

𝑯
=

𝟔
𝐦

 

𝑸 
α 

𝝈𝟎 𝝈𝟎 

𝒙 

𝒛 

𝒚 

3D crack reorientation 

𝑄 = 0,0006 𝑚3. 𝑠−1 σ0 = 0,6𝑀𝑃𝑎 
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3D crack reorientation 

Pore pressure and amplified deformed shape 

(Pa) 
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3D crack reorientation 

Hydraulic fracture evolution 

Initial crack surface and final crack surface 

(Pa) 
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Fracture junction 



Г3 

Ω1 

Ω3 Ω2 

Г1 

Г2 

Ω2 
Ω3 

Ω1 

𝒍𝒔𝒏𝟏 = 𝟎 

𝒍𝒔𝒏𝟐 = 𝟎 

Fracture junction 

• A distinct approximation space is associated to each fracture branch: 

Г𝟏 

Г𝟐 

Г𝟑 
Λ1 

Λ2 Λ3 

Λ1 

Λ2 

Λ3 

Λ1 

Λ2 
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55 

Fracture junction 

• At the fracture junctions, we have two options: 
 
   - imposing Neumann conditions:  
 
   - imposing Dirichlet conditions: 

• We choose to impose Dirichlet conditions 
because the approximation space we use for 𝑝𝑓 is 

too coarse to properly impose the Neumann 
conditions. 

• The junction paths are systematically predefined. Furthermore, we have no 
appropriate criterion for the potential deviation at the fracture junctions. At a 
junction, each fracture branch is governed by the cohesive zone model 

𝑊1 

𝑊2 𝑊3 

𝑾𝟏 +𝑾𝟐 +𝑾𝟑 = 𝟎 

𝑝𝑓,1 = 𝑝𝑓,2 = 𝑝𝑓,3 
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𝑸 

𝒍 𝟐𝒍 

𝑸 

𝟐𝒍 𝒍 

𝑳 

𝑯 

Multi-stage hydraulic fracturing 

𝑏 = 0,8 

𝐸 = 5800 𝑀𝑃𝑎 
𝐺𝑐 = 500 𝑃𝑎.𝑚 

σ𝑐 = 0,9 𝑀𝑃𝑎 
ν = 0,25 

φ = 0,1 𝑘 = 10−17𝑚2 

1
𝐾𝑙
 = 5. 10−10𝑃𝑎−1 

μ = 10−3𝑃𝑎. 𝑠 

Material parameters 

𝐿 = 120𝑚 

𝐻 = 10𝑚 
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• Various number 𝑛 of vertical fractures 

𝑛 = 5 

𝑛 = 4 

𝑛 = 6 

Multi-stage hydraulic fracturing 

• Initial state: 

(Pa) 
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Multi-stage hydraulic fracturing 

• Constant number of vertical crack (4 vertical cracks) 

• 24𝑚 < 2𝑙 < 25𝑚 

2𝑙 = 24𝑚 

2𝑙 = 26𝑚 

2𝑙 = 25𝑚 

(Pa) 
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Fluid pressure at the inlet of a vertical crack 

Multi-stage hydraulic fracturing 
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Conclusion and prospects 

• Ambitious project that aimed at modeling 3D fluid-driven fracture networks. 
 

• It relies on the latest advances of the extended finite element method. 
 

• It offers a reliable numerical tool for a wide range of industrial applications. 
 

• Potential improvements: 
 

 - self-sustained crack propagation procedure. 
 - cohesive zone parameters for fluid-driven cracks in porous media. 
 

• Prospects (ANR HYDROGEODAM 17-CE06-0016) : 
 

 -   multiple phases 
 -   thermohydromechanical coupling. 
 -   anisotropy 

S. MOOSAVI, Ph.D GéoRessources 2015-2018, Crack initiation and propagation in anisotropic 
medium accounting for Hydro-Mechanical couplings. 

I. DJOUADI, Ph.D EDF R&D - GéoRessources 2016-2019, Accounting for anisotropy in the 
instantaneous response of geomaterials for undergraound structures. 
 

 

 

50 



Merci pour votre attention 



Material parameters Bakken field 

50𝐺𝑃𝑎 < 𝐸 < 75𝐺𝑃𝑎 

0,05 < ν < 0,25 

φ~0,08 

𝑑𝑒𝑝𝑡ℎ~2200𝑚 

1. 10−15𝑚2 < 𝑘 < 3. 10−15𝑚2 

18𝑀𝑃𝑎 < σ𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙 < 28𝑀𝑃𝑎 

σ𝑐~10𝑀𝑃𝑎 

• R. Varga, A. Pachos, T. Holden, J. Pendrel, R. Lotti, I. Marini, E. Spadafora, Seismic inversion in the Barnett shale successfully pinpoints sweet spots to 
optimize wellbore placement and reduce drilling risks, SEG Annual Meeting 2012 

• E. Eseme, J.L. Urai, B.M. Kroos, R. Littke, Review of mechanical properties of oil shales: implications for exploitation and basin modelling, Oil Shale 2007 



Λ1 
Λ2 

Λ3 
Λ4 

Г 

Г 

Λ1 
Λ2 Λ3 Λ4 

Λ11 
Λ9 Λ6 

Λ1 
Λ3 

Λ4 
Λ5 

Г 

Λ9 
Λ7 Λ6 

Λ10 
Λ7 Λ8 

Λ5 Λ8 

Λ2 

• G. Ferté, P. Massin. N. Moës, Interface problems with linear or quadratic x-fem: design of a stable Lagrange multiplier space and error analysis,  
Int. J. Numer. Meth. Eng., 2014 

: intersected edge whose vertex 
nodes are submitted to equality 
relations for the fields associated 
to the fluid-filled fracture. 

: node carrying the fields 
associated to the fluid-filled 
fracture. 

• S. Géniaut, P. Massin. N. Moës, A stable 3D contact formulation using  XFEM, European Journal of Computational Mechanics, 2012 

Ferté (2014) 

Géniaut (2012) 

Approximation space for the interface 



𝒑𝒇 > 𝟎 𝒑𝒇 < 𝟎 

𝒒𝟏 

𝒒𝟏 

𝒒𝟐 

𝒒𝟐 
𝑝 

𝑝 

adherent zone 

Fluid lag 



First formulation for the cohesive zone model 

ℒ𝑟 𝒖, 𝜹, 𝝀 =
1

2
 𝜺 𝒖 : 𝑪: 𝜺(𝒖)𝑑Ω
Ω

−  𝒕. 𝒖𝑑Г𝑡Г𝑡
+ П(𝜹)𝑑Г𝑐Г𝑐

+  𝝀. ( 𝒖 − 𝜹)𝑑Г𝑐Г𝑐
+  

𝑟

2
( 𝒖 − 𝜹)2𝑑Г𝑐Г𝑐

 

• E. Lorentz, A mixed interface finite element for cohesive zone models, Comp. Meth. Appl. Mech. Eng. 2008 

E 𝒖, 𝜹 =
1

2
 𝜺 𝒖 : 𝑪: 𝜺(𝒖)𝑑Ω
Ω

−  𝒕. 𝒖𝑑Г𝑡Г𝑡
+ П(𝜹)𝑑Г𝑐Г𝑐

 

𝒕′𝒄 =
𝜕П

𝜕𝜹
 

𝒕𝒄 = 𝒕′𝒄-𝑝𝑓𝒏 

• Augmented Lagrangian (Lorentz 2008): 

 𝜹∗. [𝒕𝒄 − 𝝀 − 𝒓 𝒖 − 𝜹 ]𝑑Г𝑐
Г𝑐

= 0    ∀𝜹∗ ∈ 𝑴𝟎 𝒕𝒄 𝜹, 𝑘 = 𝝀 + 𝒓 𝒖 − 𝜹  

𝒕′𝒄 𝜹, 𝑘 = 𝝀 + 𝒓 𝒖 − 𝜹 + 𝑝𝑓𝒏 

 

• Augmented multiplier 𝜷 = 𝝀 + 𝒓 𝒖 + 𝑝𝑓𝒏 

• The total energy of the system is: 

cohesive energy external loads elastic energy 

 

Asumption of Biot effective stress:  

δ𝑐 

𝑡′𝑐 

𝜹 

σ𝑐 

𝑘 

𝑘 = 𝑠𝑢𝑝 𝜹  

𝝀 + 𝒓 𝒖 − 𝜹 + 𝑝𝑓𝒏 

 



First formulation for the cohesive zone model 

 𝝈 𝒖 : 𝜺(𝒖∗)𝑑Ω
Ω

− 𝒕. 𝒖∗𝑑Г𝑡
Г𝑡

+ [𝝀 + 𝒓 𝒖 − 𝜹 ]. 𝒖∗ 𝑑Г𝑐
Г𝑐

= 0    ∀𝒖∗ ∈ 𝑼0 

 𝝀∗. ( 𝒖 − 𝜹(𝜷))𝑑Г𝑐
Г𝑐

= 0    ∀𝝀∗ ∈ 𝑴𝟎 𝜷 = 𝝀 + 𝒓 𝒖 + 𝑝𝑓𝒏 

 

• Weak formulation of the mechanical problem: 

with 
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Determination of the leak-off coefficient (r=3,2m)  

Equivalent leak-off coefficient 

𝑔 𝑟, 𝑡 =
2𝐶𝐿

𝑡 − 𝑡0(𝑟)
 

𝑡0 𝑟 : time it takes for the fracture to reach 𝑟 

𝐶𝐿: leak-off coefficient 

𝑔 𝑟, 𝑡 : fluid flux transiting from the fracture  
to the porous matrix per unit area 



𝑳 = 𝟔𝟎𝐦 

𝑯
=

𝟒
𝟓
𝐦

 

𝑸𝟏 

𝝈𝟎 

𝝈𝟎 

Curved competing hydraulic fractures 

𝑄1 = 0,0014𝑚2. 𝑠−1 

σ0 = 3,7𝑀𝑃𝑎 

𝑏 = 0,75 

𝐸 = 17 𝐺𝑃𝑎 

𝐺𝑐 = 120 𝑃𝑎.𝑚 
σ𝑐 = 1,25 𝑀𝑃𝑎 

ν = 0,2 
φ = 0,2 
𝑘 = 10−16𝑚2 

1
𝐾𝑙
 = 0𝑃𝑎−1 

μ = 10−4𝑃𝑎. 𝑠 

Material parameters 

Loadings 

𝑸𝟏 

𝑸𝟐 

𝑄2 = 0,001𝑚2. 𝑠−1 

Δ𝑡 = 40𝑠 



Pore pressure and amplified deformed shape 



cohesive crack 
front at the 

instant 𝑛 

Equilibrium 
cohesive crack 

front at the 
instant 𝑛 + 1 

Update 𝑙𝑠𝑡 and 
compute the 

reorientation angle 

 Update 𝑙𝑠𝑛 
from the 
previous 

 
 cohesive 

crack front 

crack front at the 
instant 𝑛 + 1 

 Extension of 
the potential 
crack surface 

 
  

: cohesive crack : potential crack surface 

Equilibrium 

Procedure for the propagation on non-predefined paths 



Self-sustained procedure? 

: cohesive crack 

: potential crack surface 
: cohesive crack front 

Reoriented cohesive crack 

Cohesive crack 
before reorientation 

Reoriented potential crack surface 

Potential crack surface 
before reorientation 

• Projection of the fields from one model to another: 

implicit update explicit update 

Г𝒄 

: integration point 

Previous 
crack front 



Detection of the cohesive crack front 

: vertex node carrying λ, 𝑤, μ 
and thus the internal variable of 
the cohesive zone model α. 

: iso-zero of the internal variable α. 

: point of the cohesive crack front 
detected on the faces of the 3D 
elements. 



𝒏 

𝒕 

𝒃 

𝑽𝒕 

𝛽 

: point of the cohesive crack 
front at the instant 𝑛  

: point of the detected cohesive 
crack front at the instant 𝑛 + 1  

: point of the final crack front at 
the instant 𝑛 + 1  

Update of the tangential level set 



β < 0 

β > 0 

𝜕 𝑢 𝑡

𝜕𝜃
< 0 

𝑛 

𝑡 

𝑢 𝑡 

𝑡 

𝑛 

𝑢 𝑡 

𝜕 𝑢 𝑡

𝜕𝜃
> 0 

Sign of the bifurcation angle 

β   has the sign of  − 
𝑡𝑐,𝑡

𝜕 𝑢𝑡
𝜕θ

−
𝜕 𝑢𝑡
𝜕θ

𝑡𝑐,𝑡

2
Г𝑐Г𝑐

 



𝑳 = 𝟏𝟔𝐦 

𝑯
=

𝟏
𝟎
𝐦

 

𝑸 
α 

𝝈𝟎 𝝈𝟎 

2D crack reorientation 

𝑄 = 0,00016 𝑚2. 𝑠−1 σ0 = 0,6𝑀𝑃𝑎 



2D crack reorientation 

Pore pressure and amplified deformed shape 

(Pa) 



3D crack reorientation 
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Lateral displacement and amplified deformed shape at t=2,5s (left) and t=17s (right) 

Pore pressure and amplified deformed shape  at t=2,5s (left) and t=17s (right) 

(Pa) 
(Pa) 

(m) (m) 



Experiments 

• A. P. Bunger, J. McLennan, R. Jeffrey, Three dimensional forms of closely spaced hydraulic fractures, 2013 

material: Adelaide black granite 

𝑑 

Bunger (2013) 

𝐸 = 102 𝐺𝑃𝑎 

𝐾𝐼𝐶 = 2,3 𝑀𝑃𝑎.𝑚0,5 

σ0 = 4,6 𝑀𝑃𝑎 

ν = 0,27 

𝐿 

𝐿 = 40𝑐𝑚 

𝑑 = 15𝑚𝑚 

𝝈𝟎 𝝈𝟎 

𝑄 

𝑄 = 0,19 𝑚𝑙.𝑚𝑖𝑛−1 



Competing nearby cracks 

𝑳 = 𝟏𝟎𝐦 

𝑳
=

𝟏
𝟎
𝐦

 

𝟒
𝟑 𝑸 𝑸 

𝑑3 

Pore pressure and amplified deformed shape 

𝑏 = 0,8 

𝐸 = 5800 𝑀𝑃𝑎 

𝐺𝑐 = 900 𝑃𝑎.𝑚 

σ𝑐 = 1,0 𝑀𝑃𝑎 

ν = 0,2 
φ = 0,1 

𝑘 = 10−15𝑚2 

1
𝐾𝑙
 = 5. 10−10𝑃𝑎−1 

μ = 10−3𝑃𝑎. 𝑠 

Material parameters 

39 

𝑑3 = 1,5𝑚 

𝑄 = 0,0003 𝑚2. 𝑠−1 



Hydraulic connection at a junction 

𝑸 continuity of 𝑝𝑓 imposed 

at the junction 

continuity of 𝑝𝑓 not imposed 

at the junction 

(Pa) 



Hydraulic fracture junction 

𝑸 

𝑸 

(Pa) 



Hydraulic fracture junction 

𝑸 

𝑸 

(Pa) 

(Pa) 



Imposing a fluid flux in a fracture (3D case) 

𝑊𝑒𝑥𝑡 

𝑁1 

𝑁2 

𝐼 
𝑊𝑒𝑥𝑡 

𝑁1 



𝑁1 

𝑁2 

𝑁3 

𝑁4 

𝑁1 

𝑁2 

𝑁3 

𝑁4 

𝐼1 

𝐼2 

𝐼3 

Imposing a fluid flux in a fracture (3D case) 


