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Structural Fracture Simulation
Rules of the Game

• Given a structure, a material and a loading, answer the 
following type of questions: 

• Will a crack appear? If yes for what load? Is it fatal ? 
Where is it going ? How much energy does it take away? 
(Carpiuc bench for instance, L.Poncelet et al.).

• The (material) model is supposed to be identified on a 
set of specimen/structural experiments and then used to 
predict reality in a wide range of different loadings/
geometries.



Softening Bulk

Displacement
Discontinuity

Non softening bulk

LEFM 
(et corr.plas.)
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Classification of approaches for fracture simulation

TLS G/I/PF with 
added crack
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Gradient/Integral/
Phase-Field

No fracture!
(or just 

local criteria)

�

✏

        Need add. infos on crack direction, branching?



No discontinuity, softening bulk approaches
! Integral approach: the damage evolution is governed by a driving force which is non-

local i.e. it is the average of the local driving force over some region: (Bazant, Belytschko, 
Chang 1984, Pijaudier-Cabot and Bazant 1987).  

! Higher order, kinematically based, gradient approach involving higher order gradients 
of the deformation: (Aifantis 1984, Triantafillydis and Aifantis 1986, Schreyer and Chen 
1986) or additional rotational degrees of freedom (Mühlhaus and Vardoulakis 1987).  

! Higher order, damage based, gradient models: the gradient of the damage is a variable 
as well as the damage itself. This leads to a second order operator acting on the damage: 
(Fremond and Nedjar 1996, Pijaudier-Cabot and Burlion 1996, Peerlings, de Borst et al 
1996, Lorentz et Andrieux 1999, Nguyen and Andrieux 2005).   

! Generalized continua, micro-morphic approach Forest (et al.) 2006 
! Variational approach of fracture: (Francfort and Marigo 1998, Bourdin, Francfort and 

Marigo 2000, Bourdin, Francfort and Marigo 2008)  
! Phase-field approach emanating from the physics community: (Karma, Kessler and 

Levine 2001, Hakim and Karma 2005) and more recently revisited by (Miehe, 
Welschinger, Hofacker, 2010).  

! Peridynamics Silling 2000 
! Comparison papers : Peerlings, Geers et al. 2001, Lorentz et Andrieux 2003

Global regularization and no specific concern for discontinuity



Softening Bulk

Displacement
Discontinuity

We concentrate on softening bulk 
to guide the crack

TLS G/I/PF with added crack
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Gradient/Integral/
Phase-Field

Choice ?



Discontinuity or no discontinuity? 
Numerical point of view 

• No discontinuity requires very small elements to match the high 
displacement gradients

• Discontinuity allows mesh coarsening away from moving tips

• Discontinuity limits element distorsion with large strains

• Discontinuity is more complicate than no discontinuity but X-FEM is available 
and remeshing techniques have made a lot of progress over the past decade.

• Discontinuity handling can a priori be tedious with complex crack topologies 
(we will fix this).



Discontinuity or no discontinuity? 
Theory point of view 

• Discontinuity gives a direct access to crack opening 
(useful for contact, friction, hydraulic fracture, 
fragmentation, cutting, blanking,…)

• Discontinuity does not require Gamma Convergence, ie, 
no need to prove that the formulation mimics a crack 
opening because there is a crack opening in the 
formulation



Softening Bulk

Displacement
Discontinuity

We concentrate on softening bulk 
and discontinuity

TLS

�

✏



Quasi-brittle modeling ingredients for a propagating crack

Toughness Strength Process zone length Proc. zone width 

Gc �c l
coh

Griffith

Cohesive Zone Model (CZM)

         Damage Model
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Cohesive zone model
The cohesive zone model was first introduced by Dugdale in [8] for ductile materials and 
by Barenblatt in [9] for concrete. The model represents the progressive fracture process 
by condensing over a crack the effect of the whole fracture process zone. A cohesive 
behavior is imposed between the crack lips (see Fig. 2a). The bi-linear cohesive law, well-
known for concrete behavior, is presented in Fig. 3a. This model is widely used [1] and 
is considered to have good capabilities to fit experimental results when the crack path is 
known. If it is not previously known, a complementary method, like the maximum tan-
gential stress (MTS) criterion [10], has to be applied.

Let us consider the following free energy of the cohesive zone, located at x=0.

where k>0 and gCZM is a decreasing dimensionless function that characterizes the 
stiffness of the cohesive zone. We derive the dual quantities t (tension) and A
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Fig. 1 Displacement over the whole bar for CZM and TLS models for a partially damaged bar. L is the length 
of the bar and l the position of the damage front in TLS model.

σ

a Cohesivezone.b Thicklevelsetmodel.
Fig. 2 Representation of an open crack with a cohesive zone (left) and with a TLS damage zone (right). Dark 
(light) gray indicates (un) damaged.
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TLS Damage key features

Page 3 of 22 Parrilla Gómez et al. Adv. Model. and Simul. in Eng. Sci.  (2015) 2:18 

Cohesive zone model
The cohesive zone model was first introduced by Dugdale in [8] for ductile materials and 
by Barenblatt in [9] for concrete. The model represents the progressive fracture process 
by condensing over a crack the effect of the whole fracture process zone. A cohesive 
behavior is imposed between the crack lips (see Fig. 2a). The bi-linear cohesive law, well-
known for concrete behavior, is presented in Fig. 3a. This model is widely used [1] and 
is considered to have good capabilities to fit experimental results when the crack path is 
known. If it is not previously known, a complementary method, like the maximum tan-
gential stress (MTS) criterion [10], has to be applied.

Let us consider the following free energy of the cohesive zone, located at x=0.

where k>0 and gCZM is a decreasing dimensionless function that characterizes the 
stiffness of the cohesive zone. We derive the dual quantities t (tension) and A

(1) !CZM(w,α)=
1

2
gCZM(α)kw

2

(2) σ=
∂#CZM

∂w
=gCZM(α)kw

−L−l0lL

w

positionx

displacem
ent

u(x)

TLS
CZM

Fig. 1 Displacement over the whole bar for CZM and TLS models for a partially damaged bar. L is the length 
of the bar and l the position of the damage front in TLS model.

σ

a Cohesivezone.b Thicklevelsetmodel.
Fig. 2 Representation of an open crack with a cohesive zone (left) and with a TLS damage zone (right). Dark 
(light) gray indicates (un) damaged.

l
coh

2lc

Classical 
local model

Extra work over 
a controlled 

thickness

Discontinuous 
displacement

Process zone 
cabability

TLS looks like a CZM with some thickness that allows the nose to 
find its way. This solves the issues of the CZM that lacks 
directionality for growth at the tip.  



How to make it happen?
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TLS Model Basic Idea :  
TLS is a geometrically based damage theory, 

Zoom on the localizaing zone

1 The damage front 
is a level set

2 The damage profile is 
a data of the model

3 Crack faces are thus also given by a level set

D = D(�)

= �/lc

TLS equations are thus  D = D(�)

or eliminating phi

TLS theory a priori limits the way damage may evolve

krDk =
g(D)

lc



Constitutive Equations 
(quick summary)

Figure 3: Typical CZM model expressed in terms of a traction-separation function t = f(w), or using the damage variable
d.

2.2. TLSV1 approach

The local damage model is given by the free energy

 (✏, D) =

1

2

(1�D)E✏2 (4)

where ✏ is the strain in the bar, and D the bulk damage variable. The corresponding state equations
are
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where � is the stress in the bar and Y the bulk energy release rate. The evolution equations are

˙D � 0, Y � YcH(D)  0 (Y � YcH(D))

˙D = 0 (6)

where Yc is a constant and H a dimensionless, increasing function such that H(0) = 1. The model
parameters are thus E, Yc and the function H. This model is purely local, and therefore needs some
regularization in order to avoid spurious localization. In the TLS approach a characteristic length `c
is introduced, by writing the damage variable as an increasing function D(�) of the distance to the
damage front (the boundary between the sane and the damaged material) � = ` � x, where ` is the
position of the damage front (see figure 2 (b)):

8
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An example of a parabolic damage profile is given in figure 4. This allows to define non-local
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evolution equations (6):
˙D � 0, Y � YcH  0 (Y � YcH)

˙D = 0 (9)

Note that the definition of Y and ˙D ensures that the local and non-local dissipated energy are
equal:

Z
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The last equation is replaced by an averaged one in the localizing 
zone 
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and dissymmetric 
tension-compression

Y ! Y ! Ḋ ! Ḋ



Mean fields are a consequence on the way damage may evolve



Pijaudier-Cabot, Bazant 1987

In the TLS model, the length over which averaging is 
performed in non-constant but evolving in time

Similarity and difference of TLS with the 
non-local integral approach

Moes et al. 2011
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Fig. 3 Sketch of the damage extent around a V-notch with the
TLS approach. Point T indicates the tip of the damage zone
along the notch bisector. Segments indicate the damage gradient
direction within the damage zone

x

y

φ(x, y )

Fig. 4 Same as previous figure but showing damage with eleva-
tion

OverΩ+, the φ field has a simple geometrical inter-
pretation. Its elevation is a ruled surface (except on the
skeleton). Gradients of φ are organized along segments
joining the boundary ofΩ+ to the skeleton (see Figs. 3
and 4).

Condition (12) and relation (35) imply that the level
set field velocity is uniform along the gradient of d
(depicted on Fig. 2):

∇d · ∇φ = 0 (36)

0
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d

φ
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Fig. 5 Damage profile considered in this paper

We are now able to prove the fact that under condi-
tion (8) (or equivalently (32)) the distance between a
point where d = 0 and a point where d = 1 is at least
lc. It is the same as proving that the distance between a
point where φ = 0 and a point where φ = lc is at least
lc. This is obvious from (35).

Since function φ(d) is monotoneously increasing,
it can be inverted to give the so-called damage pro-
file d(φ). The choice (30) for g(d) corresponds to the
following profile:

R+ → R+ : d(φ) =

⎧
⎪⎨

⎪⎩

0 if φ

1 − (1 − φ/ lc)2 if 0 ≤ φ ≤ lc
1 if φ ≥ lc

(37)

shown in Fig. 5.

3 Simulation with the TLS model

The TLS model detailed in the previous section is
applied for the simulation on three types of unbounded
specimen under plane strain assumptions: edge sharp
or blunted notches (Fig. 6) and cavities (Fig. 7). The
notch depth is denoted a and the root radius ρ. The cav-
ity radius is also denoted ρ. The loading is a uniform
tension at infinity. Material parameters corresponds to
PMMAwhereas the TLS parameters are those of a lin-
ear cohesive law (see “Appendix A”).

The numerical implementation of the TLS model is
not described here. Details may be found in Moreau
et al. (2017). In the TLS simulation, the load is not
imposed but obtained from a dissipation control algo-

123

Analysis of the failure at notches and cavities in quasi-brittle media
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ex
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Fig. 2 Auto-similar propagation of a TLS type crack in an infi-
nite media. Segments indicates damage gradient direction. The
dotted curve is an iso-d

2.4 Link with the cohesive model

At this stage, we have not yet decided on a particu-
lar choice of the g(d) function. We analyze the conse-
quence of this choice on the critical opening at failure.
Given parameters of a TLS model, a corresponding
cohesive model with the same overall response in uni-
axial tension may be obtained in term of traction σ and
crack opening w (Gómez et al. 2015). It reads:

σ = σc
√
1 − d

√
h̃(d)
d

(27)

w = 2lc
E

σ

∫ d

0

x
1 − x

1
g(x)

dx (28)

where σc =
√
2EYc. The critical opening of the cohe-

sive model as d → 1 is given by:

wc = lim
d→1

w

= 2σclc
E

lim
d→1

⎛

⎝

√
h̃(d)
d

√
1 − d

∫ d

0

x
1 − x

1
g(x)

dx

⎞

⎠

= 2σclc
E

√
h̃(1) lim

d→1

(√
1 − d

∫ d

0

x
1 − x

1
g(x)

dx
)

= 2σclc
E

√
h̃(1) lim

d→1

2
√
1 − d
g(d)

(29)

The last equality has been obtained by the L’Hospital
theorem. The critical opening is thus governed by the
asymptotic behaviour of g(d) as d → 1. To avoid zero
or infinite critical opening, g must behave asymptot-
ically as a square root function. We decide to pursue
with the simplest choice satisfying the normalization
condition (9):

g(d) = 2
√
1 − d (30)

2.5 Geometrical interpretation and implementation of
the TLS model

At this stage we describe the geometrical content and
its relationship with level set technology which drives
the implementation (Sethian 1999). We introduce the
level set function φ defined by:

φ(d) = lc

∫ d

0

1
g(s)

ds (31)

As damage grows from 0 to 1, the level set rises mono-
toneously from 0 to lc. Replacing d by φ as unknown
in (8), we obtain a simpler expression

∥∇φ∥ − 1 ≤ 0 (32)

Over Ω+, the condition is:

∥∇φ∥ = 1 (33)

which is known as the eikonal equation. The above
equation must be understood in the sense of limit vis-
cosity solution as defined by Lions (1982). Solution φ

is obtained by passing to the limit as ϵ → 0with respect
to solutionsφϵ of the followingnon-linear elliptic equa-
tion:

∥∇φϵ∥ − 1 − ϵ%φϵ = 0 ϵ > 0 (34)

where % is the Laplace operator. The limit has an
explicit expression in terms of the boundary values
(Lions 1982):

φ(x) = min
y∈∂Ω+

(φ(y)+ L(x, y)), x ∈ Ω+ (35)

where L(x, y) is the length of the shortest path, con-
tained in Ω+, linking points x and y. If the boundary
data are zero, φ is simply the distance function to the
boundary. Equations (31) and (35) completely charac-
terize the d field overΩ+. Equation (35) implies that φ
is continuous. Its gradient is however not continuous.
The set of points for which the gradient is discontinu-
ous is called the skeleton of Ω+ and denoted Γs. The
skeleton of the damage zone emanating from a notch
is the segment OT in Fig. 3. The skeleton is the set
of points x ∈ Ω+ where arguments y in (35) are not
unique.
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Segmentation of the localizaing domain to define the non-local 
driving forces 

No specific  boundary conditions for damage, the damage gradient is 
not necessarily orthogonal to the boundary (or symmetry plane).
Important remark : the segments are not explicitly built for the 
numerics.

Indep. segment on each 
side of the crack
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Gȧ

Y =< Y >

Z

⌦\a
w(u) d⌦

� =
@w

@✏(u)
� =

@w

@✏(u)
� =

@w

@✏(u)

Z

⌦
w(u,D) d⌦

Z

⌦
w(u,D(�)) d⌦

Y = � @w

@D
Z

⌦
Y Ḋ d⌦
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TLS simulation examples

Griffith type Model 
(short process zone)

Sharp softening



Implementation aspects 
X-FEM enrichment to introduce displacement jumps

Displacement

X-FEM = Extended finite element method  



Simulation examples:
3D chalk caseChalk twist 

Salzman et al. 2016 

Clear displacement jump



XXZZ
YY

Twisted L-shape

Clear displacement jump
Thanks to X-FEM for the 
numerical implementation 

Salzman et al. 2016



-20000

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 0.5 1 1.5 2 2.5 3

R
e
s
u
l
t
a
n
t

(
N

)

Displacement(mm)

Y

Z

Y init

Z init



Numerical Cheese

34 A. Salzman et al.

Fig. 14 Undocumented test case (one crack diving under the
other) presenting correct partial merging of Γ0 fronts, but not Γc
fronts

Fig. 15 Spherical holes test case: iso-surface after 336 load
steps, Γ0 in blue, Γc in red

θ

∥→
F ∥ = ∥→

F max∥.sin θ
2

)

L= 200mm

2L
15

L
20

Fig. 16 Chalk test case

Loading is applied in a tangential direction to the
chalk surface. To stick to Bordas et al. (2008), loading
magnitude depends on the angle θ defined in Fig. 16.

Fig. 17 Chalk comparison of the final state between simula-
tion and experiment presented in Bordas et al. (2008) (Reprinted
from Bordas et al. (2008) Copyright (2007) with permission from
Elsevier)

As the object is axisymmetric, a defect must be intro-
duced to start at a defined location. In this work a simple
initial damage is set by a Γ0 small sphere with a center
at L/2 along cylindrical axes on the chalk surface. This
gives the opportunity to reduce time consumption by
using a mesh with a refined slice where a crack will
start and is expected to develop. Figure 17 presents the
result of the simulation after 103 load steps, when the
chalk is completely separated into two parts.

One observes a good agreement of crack shape
between the experiment and the simulation: the devel-
opment of a helicoid (bottom left and middle view) is
followed by a blunt finish (bottom right view) where
the crack front shape is more straight.

6.3 L shape: mode I+ III

Lorentz and Godard (2011) modified the standard L
Shape–mode I test case by introducing a supplemen-
tary lateral imposed displacement. This way mode III
is activated and the crack path is slightly modified.
Geometry and loading are presented in Fig. 18. Mesh
is refined around corner A up to extremity B.

Two types of computations have been conducted.
One with automatic damage initiation and the other
with forced damage initiation (along the corner by
setting an initial cylindrical φ of radius 1.05 × lc).
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Salzman et al. 2016







Merging of damage zone, followed by merging of cracks

Non-local computational effort only inside the blue zone



Comparison with LEFM 
X-FEM simulation of the 

early 2000’



Modeling cracks with X-FEM

Belytschko & Black

1999

Moës, Dolbow 

& Belytschko 1999

Sukumar et al. 2000
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Propagation of two cracks emanating 
from holes

Belytschko et al. 2000



Level Set Description of the Crack

x , t  ,x , t 0 

x , t  ,x , t =0 

x , t 0

Defines the crack location

Gives the crack front

does not intersect the crack 

The level set function are 

assumed to be orthogonal

∇⋅∇=0 ∀ t

Stolarska et al. 2001, Belytschko et al. 2001, Moës et al. 2002



Crack growth : Lens-shaped crack 

Notice the change in topology of the 

crack front 1 front, then 4 fronts

Gravouil et al. 2002



Crack growth :
Cracked beam in bending 

The crack front is rotating as it 

moves downward to reach mode I

Gravouil et al. 2002



• Need for an initial crack (no crack initiation)

• Crack growth based on stress intensity factor (not 
damage based model).

• Two level set fields needed for each crack.

• Crack merging is complex because each independent 
crack had 2 level set fields.

• X-FEM is now used as a core tool in the TLS 
implementation.  The TLS says where to put the crack. 

Comments on previous LEFM X-FEM simulations 



TLS simulation examples

Long process zone and size effect
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Cohesive zone model
The cohesive zone model was first introduced by Dugdale in [8] for ductile materials and 
by Barenblatt in [9] for concrete. The model represents the progressive fracture process 
by condensing over a crack the effect of the whole fracture process zone. A cohesive 
behavior is imposed between the crack lips (see Fig. 2a). The bi-linear cohesive law, well-
known for concrete behavior, is presented in Fig. 3a. This model is widely used [1] and 
is considered to have good capabilities to fit experimental results when the crack path is 
known. If it is not previously known, a complementary method, like the maximum tan-
gential stress (MTS) criterion [10], has to be applied.

Let us consider the following free energy of the cohesive zone, located at x = 0.

where k > 0 and gCZM is a decreasing dimensionless function that characterizes the 
stiffness of the cohesive zone. We derive the dual quantities t (tension) and A

(1)!CZM(w,α) =
1

2
gCZM(α)kw2

(2)σ =
∂#CZM

∂w
= gCZM(α)kw

−L −l 0 l L

w

position x

di
sp
la
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m
en
t
u
(x
)

TLS
CZM

Fig. 1 Displacement over the whole bar for CZM and TLS models for a partially damaged bar. L is the length 
of the bar and l the position of the damage front in TLS model.

σ

a Cohesive zone. b Thick level set model.
Fig. 2 Representation of an open crack with a cohesive zone (left) and with a TLS damage zone (right). Dark 
(light) gray indicates (un) damaged.

2 `c

`
coh

Figure 6 Classical shape of a damaged zone and lengths definitions.

2.3 From general to particular relations

These general relations are now derived in the case of a particular choice of gdam(d). Later, a particular
form of d(�) is assumed.

2.3.1 A particular choice of damage function g
dam

A classical choice is made:

gdam(d) = 1� d, and then �dam(", d) =
1

2

(1� d)E"2 (43)

The admissibility condition (16) becomes
h0(d) � 0 (44)

and

I(ˆ�) =

Z
�̂

0

d

1� d
dˆ� (45)

The system of equations (39) can be rewritten as follows.

�̂ = F (�I�̂) and H(d(ˆ�)) =
d(ˆ�)

1� d(ˆ�)
�̂2 (46)

Moreover,
t
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=

p
2EY

c

(47)

2.3.2 A particular choice of TLS regularization d(�)

We consider a parabolic damage law (see Figure 5)

d(ˆ�) = 2

ˆ�� ˆ�2 (48)

and

I(ˆ�) =
ˆ�2

1� ˆ�
(49)

The system (46) writes now

�̂ = F
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ˆ�2

1� ˆ�
�̂

!
and H(d(ˆ�)) =

2

ˆ�� ˆ�2

(

ˆ�� 1)

2
�̂2 (50)

Geometrical and mechanical similarities 

TLS

CZM
Do we preserve 
lcoh as lc -> 0 ?

YES



This choice is motivated by a damage distribution obtained from non-local damage and fracture
equivalence [17], damage profiles obtained by lattice model simulations [24] and their similarity with
some acoustic emission profiles [25,26].

2.4 Two examples of cohesive laws

Two particular cases of cohesive stress-opening functions are derived from previous relationships: the
linear and the bi-linear ones.

2.4.1 Linear cohesive law

We consider first a linear cohesive law F (ŵ) = 1� ŵ (see Figure 7). The softening function is obtained
by (50).

�̂(ˆ�) =
1� ˆ�

1� ˆ�+ �ˆ�2
and H(d(ˆ�)) =

2

ˆ�� ˆ�2

(1� ˆ�+ �ˆ�2
)

2
(51)
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(a) Cohesive linear law.

�

f

"

�

l

c

(b) TLS equivalent local behavior for different `c values.
Increasing values of `c are indicated by the arrow.

Figure 7 Cohesive linear law and TLS local behavior.

2.4.2 Bi-linear cohesive law

The bi-linear cohesive law is considered as it is one of the most popular laws to describe concrete [27-
32]. It is presented in Figure 8(a). The method to obtain H and its derivative h is the same as previously.
The result is a continuous and piece-wise differentiable H function, that is a discontinuous but increasing
h function. Corresponding strain-stress curve is shown in Figure 8(b). Details of the calculations are
given in the appendix A. Some conditions on the choice of the cohesive and TLS parameters are analyzed
in appendix B.

3 Results and discussion

The main numerical issues for implementing the TLS approach are

From CZM to TLS

A. Parrilla-Gomez et al. 2015 
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Figure 1 Displacement over the whole bar for CZM and TLS models for a partially damaged bar. L is
the length of the bar and l the position of the damage front in TLS model.

1.1 Cohesive zone model

The cohesive zone model was first introduced by Dugdale in [7] for ductile materials and by Barenblatt
in [8] for concrete. The model represents the progressive fracture process by condensing over a crack
the effect of the whole fracture process zone. A cohesive behavior is imposed between the crack lips
(see Figure 2(a)). The bi-linear cohesive law, well-known for concrete behavior, is presented in Figure
8(a). This model is widely used [1] and is considered to have good capabilities to fit experimental
results when the crack path is known. If it is not previously known, a complementary method, like the
maximum tangential stress (MTS) criterion [9], has to be applied.

(a) Cohesive zone. (b) Thick level set model.

Figure 2 Representation of an open crack with a cohesive zone (left) and with a TLS damage zone
(right). Dark (light) gray indicates (un)damaged.

CZM and TLS 1D equivalence

For any given stress, we  impose same energy, dissipation 
and elongation in both models. 

Note that the analysis was already carried out with other non-
local approach (Cazes et al 2009, Lorentz et al. 2012)



Analysis of size and shape effects 
in concrete beams

join work with 
A. Parrilla-Gomez, 

D. Gregoire and G. Pijaudier-Cabot et al. 2017
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Figure 9 Three point bending (TPB) test.

Figure 10 Damage over the deformed specimen at a given step of the simulation. Blue is undammaged
material. Red is damage close to 1. The white locates the crack.
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Global behavior: three point bending tests. It is interesting to observe global CMOD-force curves
shown in Figure 11. The global behavior is very close for the four values of `

c

. The main difference is
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Summary on TLS (V1)

• The extra non-local numerical work is only in the 
localizing phase (nothing special in the sane phase).

• Clear indication where to put the crack, giving 
displacement discontinuity (level set phi = lc) 

• Explicit scheme nonlinear solver (robustness of the 
nonlinear solve).

• “Fast” (2D 5-30 min,  3D 5-10h on 20 procs). 



Distinction with  gradient damage / phase-field model

• TLS combines sharp crack representation (where crack is fully 
formed) and diffuse (process zone). There is thus no need for 
fine mesh along the whole crack path, just in the process zone.

• Eikonal equation instead of a Laplace equation. Three 
important consequences  

• No matrix solve for damage update, fast marching is used  

• No boundary conditions needed for d

• The thickness of the localizing band is 2 lc (1D, 2D, 3D)

krDk =
g(D)

lc

�D =
h(D, ✏)

l2c

TLS

Damage Gradient / PF



• TLS V1 is fine for Griffith type crack and traction free 
crack

• We noticed that long process required much more 
element per lc than short ones for the same accuracy.

• In TLS  V1, the crack is placed traction free on faces where 
damage is one.  Applying contact with friction afterwards 
is an issue. 

• Failure under compression will be an issue : how to go 
from a scalar isotropic behavior to a surface oriented 
localization.

Motivations for a limited softening in the bulk (TLS V2)

Difficulties with TLS V1



Cohesive TLS V1 TLS V2

D < 1 D = 1 D < 1

(a) CZM (b) TLSV1 (c) TLSV2

Figure 1: Comparison of the three models: cohesive zone model, TLS damage model (TLSV1), and new version of the
TLS model (TLSV2).

(a) (b) (c)

Figure 2: Displacement u in a 1D bar with strain localization at x = 0, modeled with three different models: CZM (a),
TLSV1 model (b) and TLSV2 model (c).

2. Model description: 1D case

Consider a bar of length 2L and Young modulus E under imposed displacement, leading to tension.
Localization is assumed to start at the middle of the bar (x = 0). Figure 2 depicts the displacement
field along the bar for 3 different models: a pure CZM, a pure TLSV1 damage model and a TLSV2
model, which is a mix between damage model and CZM. These models are detailed in section 2.1, 2.2
and 2.3 respectively. The last model is the target of the paper.

2.1. The cohesive zone model
We consider an extrinsic type model (infinite initial stiffness) with an energy given by:

'(w, d) =
1

2

k
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d
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◆
w2 (1)

where k is a reference cohesive stiffness, d the interfacial damage variable and w the displacement
jump. It leads to the state equations
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where t is the cohesive traction and y the cohesive energy release rate. The associated evolution
equations are:

˙d � 0, y � ych(d)  0, (y � ych(d)) ˙d = 0 (3)

where yc is a constant and h a dimensionless, increasing function such that h(0) = 1. The model
parameters are thus k, yc and the function h.

Usually, a CZM is given as a function t = f(w), with f(0) = �
c

the tensile strength and f(w
c

) = 0,
where w

c

is the critical opening (see figure 3). It can be shown (see Appendix B) that yc and h can
be determined in order to obtain a model defined by the potential (1) and the evolution equations (3)
equivalent to a model defined by a traction-separation function t = f(w).

4
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How to combine interfacila and bulk damage evolution

In CZM model interfacial damage evolves as

In TLS  V1 bulk damage evolves as 

and D = D(�)

TLS V2 states that d = d(� |interface)

So interfacial and bulk damage cannot evolve independently, 
they are tied by the level set  

The TLS V2 evolution is based on configurational forces  



Level set field evolution condition in the TLS V2

As the level set evolves it dissipates both in the bulk and the interface. 
We impose  that this loss is equal to the critical value for level set advance



Zoom
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Figure 9 Three point bending (TPB) test.

Figure 10 Damage over the deformed specimen at a given step of the simulation. Blue is undammaged
material. Red is damage close to 1. The white locates the crack.
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Figure 11 Global behavior of TLS simulations of TPB test for different `
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Global behavior: three point bending tests. It is interesting to observe global CMOD-force curves
shown in Figure 11. The global behavior is very close for the four values of `

c

. The main difference is



the symmetry of the geometry. The upper part of the plate presents
a Young modulus ten times larger, the imposed load is therefore
very close to an imposed displacement during a large part of the
computation. This computation illustrates the potential of the
method, especially for the initiation of damage and cracks. The
computational mesh presents a characteristic element size of
about lc/10. Using the arc-tangent damage shape, we obtain a max-
imum initial damage value d! 0.1, which means a negligible im-
pact on the global structure stiffness. The Young modulus and
Poisson ratio used are respectively E = 36.5 GPa and m = 0.2, while
we choose lc = 4 " 10#2 m and Yc = 102 Pa.

The damage evolution and the computational mesh are shown
in Fig. 19. The corresponding load–displacement curve is depicted
in Fig. 18. During the first computation steps, we observe that six
small defects have been initiated on the holes, on the horizontal
symmetry axis. Then, one after the others, those defects first grow

until reaching a complete damage, and then propagate the crack
(fully degraded zone) horizontally. We also observe that the global
stiffness of the structure is not much affected as a defect grows
from d = 0 to d = 1. On the contrary, the crack propagation corre-
sponds to an unstable (strong snapback) process with large loss
of stiffness.

This computation took 110 min for 550 propagation steps on a
7688 triangles mesh using polynomials of order 2 on a single AMD
Opteron processor.

4.4. The Brazilian test

The loading and boundary conditions of this classical bench-
mark are depicted in Fig. 20. The specimen thickness is 0.05 m with
a radius of R = 0.1 m and bearing strips of width R/4 (we take the
symmetry of the problem into account, the load F is distributed
on a length R/8) presenting a Young modulus fifty times larger than
the specimen. The physical parameters used are E = 36.5 GPa,
m = 0.2, Yc = 66.6 Pa and lc = 10#2 m. Note that the use of the dis-
symmetric elastic potential is necessary here to obtain the ex-
pected vertical crack propagation.

As for the previous simulation, we check for possible required
damage initiations at each time step. The load displacement curves
are depicted in Fig. 21, the corresponding displacement fields and
iso-zero position in Fig. 22. The results are in very good agreement
with observations given in the literature [28,11]. Indeed, we ob-
serve that defects are initiated at an approximate distance of 2R/
3 from the center (A). The damaged zone grows until a crack ap-
pears (B) and propagates downward to the center. This propaga-
tion corresponds to a severe snap-back on the load–displacement
curve. Once the lower crack tip reaches the center (C), the upper
crack tip starts to grow upward (D). The final damage field seems
to be in agreement with numerical results from standard non-local
models, see Rodríguez-Ferran and Huerta [31] for instance. The
convergence of the load–displacement curve, the crack path and
the damage initiation process has been observed using several
meshes and level set increments amax.

Note finally that damage initiation might have a significant im-
pact on the displacement at some points as point P. In a second
computation, corresponding to the dashed blue lines of Fig. 21,
we considered a single initial damage at the center and did not ini-
tiate any other damaged zone during the computation, as done in
many crack computations on this benchmark.Fig. 20. Domain definition and boundary conditions for the Brazilian test.

Fig. 21. The solid black line corresponds to the automatic initiation procedure, based on local criterion Y = Yc. For the dashed blue line, a single centered damage has been
forced and no other damage initation was authorized, as often computed in the literature. A severe snap-back is observed in both computations on the load–displacement
curves for the Brazilian test. The vertical displacement under the load U and the horizontal displacement at point P are shown in the right and left plots respectively for a
specimen thickness of 0.05 m.

24 P.E. Bernard et al. / Comput. Methods Appl. Mech. Engrg. 233–236 (2012) 11–27

Splitting test (Brazilian test)



(a) (b)

(c) (d)

Figure 26: 2D splitting test : bulk and cohesive damage fields at di↵erent
computation steps. The black thick lines are the iso-zero and iso-�⇤ of the
level-set.
. 30

Bulk and cohesive damage 
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Figure 26: 2D splitting test : bulk and cohesive damage fields at di↵erent
computation steps. The black thick lines are the iso-zero and iso-�⇤ of the
level-set.
. 30

Direct access to crack opening



Conclusions 
• TLS lies between damage and cohesive zone models (best 

of both worlds). It gives CZM a way to propagate on its 
own branch and coalesce.

• Crack appears automatically (location is part of the TLS 
model).

• The TLS theory is implemented using the X-FEM  to allow 
for displacement jumps in the simulation (remeshing should 
be possible).

• No matrix solve for damage update and localization 
treatment very limited in space -> low CPU.



Other Works 

• Fracture Dynamics  (no matrix solve at all and 
fixed grid). 

• Ductile failure (ongoing). The cumulative plasticity 
is controlled.

• Two-scale solver to further reduce computing 
time. Target:  2D < 5min 1 proc, 3D < 1h 20 proc.


