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Abstract

An extended version of the well-known GTN isotropic hardening model is proposed in this paper. The yield
function of the proposed constitutive model possesses the distinctiveness to explicitly depend upon the third
stress invariant. Besides, the Tvergaard parameters depend upon the void volume fraction. The proposed
constitutive model is used to numerically analyze the failure behaviour of butterfly specimen. As long as
softening initiation of specimen is not reached, the computational results highlight similarities and good
agreement with those provided by the use of the GTN model. These observations hold for tension-dominated
deformation and shear-dominated deformation as well. However, for the later loading, discrepancy shows up
as soon as specimen failure starts.

1 Introduction

This investigation addresses the use of an extended version of the GTN isotropic hardening model
to analyse the ductile failure behaviour of butterfly specimen subjected to combined shear and
tension large deformations. To put it in a nutshell, for the GTN model material [3] is assumed to be
composed of a dense elastic-plastic matrix sprinkle with evenly distributed spherical microvoids. As
regard failure behaviour, when the stress triaxiality (the ratio of the first to second stress invariants)
is high enough, the voids remain near spherical and, as a matter of fact, the ductile fracture process
is rather well described by the GTN model. On the other hand, if void nucleation is disregarded, this
model cannot describe ductile damage evolution for shear-dominated loading. For such a loading
for which stress triaxiality is low and even zero in case of pure shear, continued softening leading
to ductile failure is known to occur [4].
An extension of the Gurson-Tvergaard’s plastic potential was proposed in [7] where the authors
focused their study on the determination of yield surfaces for porous plastic materials using a huge
number of finite element simulations. The porous ductile materials contain spherical empty voids
arranged in cubic arrays, namely, simple cubic (SC), Body-Centred Cubic (BCC) and Face-Centred
Cubic (FCC) arrays. FEA was used to simulate unit cells and the macroscopic yield surfaces of the
porous materials were obtained using the probing technique which goal is to obtain a yield function
in an analytical expression that can be used in continuum studies. For more detailed explanations
of the subject, the reader are referred to the paper [7]. The obtained yield points was fitted by a new
yield function which turned out to be similar to the Gurson-Tvergaard one for porosity ranging
between a very small value to the percolation threshold. This yield function was found to explicitly
depend upon the third stress invariant.
A constitutive GTN-like model based on the proposed plastic potential is numerically implemented
in a FE program. The presence of the third stress invariant in the yield function typically results in
a high degree of non-linearity. The constitutive equations and the coalescence criterion based on the
effective porosity are integrated using the general backward-Euler return algorithm [2]. This stress
integration algorithm has been developed and implemented into Abaqus/Explicit. Subsequently, the
proposed model constructed in this way is then used to analyze the behavior of a three-dimensional
optimized butterfly specimen [6] subjected to shear-dominated and tension-dominated deformation,
resulting in low and high stress triaxialities in the middle section of the specimen, respectively.
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2 Constitutive relations

❶ Approximate GT-like condition proposed in [7] :
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(a) The determinants I3 := det (σ) and J3 := det σ
′3 are related by I3 = J3 +
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(b) The macroscopic Cauchy stress tensor σ is resolved as σ = −p1+ 2
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is the von Mises stress.

(c) σ̄ is the effective flow stress of the damage-free matrix material, (q1, q2) are the Tvergaard
parameters, and H = (ǭp, f ) where ǭp is the effective plastic strain.

❷ Constitutive equations written in a rate format :

ǫ̇ = ǫ̇
e + ǫ̇

p , σ̇ = Ce : (ǫ̇ − ǫ̇
p) , ǫ̇

p = λ̇ r (σ; H) , Ḣ = λ̇ h (σ; H) (2)

(a) where Ce is the elastic moduli tensor, r is the direction of the plastic flow and h is the
direction of the rate of the plastic internal variables H.

❸ The plastic strain rate is decomposed into volumetric and deviatoric parts, ǫ̇
p =

1

3
ǫ̇

p
v 1+ ǫ̇

p
q ,

which facilitates development of the integration algorithm :
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(a) The presence of J3 in the expression of the yield function Φ the deviatoric component ǫ̇
p
q

cannot be put in the form ǫ̇
p
q = ǫ̇

p
q n, where n is the deviatoric strain rate tensor normal to the

yield surface Φ = 0 and which norm is unity.

(b) To determine the plastic multiplier, the loading unloading conditions should be imposed
in a Kuhn-Tucker form as

λ̇ ≥ 0, Φ(p, q, J3; H) ≤ 0, λ̇ Φ(p, q, J3; H) = 0 (4)

implying that during plastic loading, Φ = 0, λ̇ ≥ 0 and Φ̇ = 0.

❹ The effective void volume fraction f ⋆ proposed by Tvergaard and Needleman (1991) is used to
simulate the rapid loss of strength accompanying void coalescence.

• The extended yield function Φ given by (1), the Tvergaard q-like parameters a1 and a2 depend
on f , that is a1 = a1( f ), a2 = a2( f ). It linearly depends upon the third stress invariant I3 with
coefficient proportional to the hydrostatic pressure p. The parameter s, also depending on f ,
determines the influence of the new term in the yield condition (1) which reduces to that of the
classical GTN model for s = 0, a1 = q1 f and a2 = q2.

• Whenever the constant s is non-zero, there is an effect of I3 on the plastic flow. Clearly the yield
function Φ contains three functions of void-volume fraction f , namely a1, a2 and s which are
slightly different for each of the three cubic microstructures considered in [7].

• The calculations have been carried out in Abaqus/Explicit and similar values for the damage
parameters have been used for both the proposed model and the GTN one in order to compare
their ability to predict void growth to coalescence and the corresponding failure mechanism.
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3 Butterfly specimen under shear and tensile loading

Fig. 1 shows a schematic representation of the geometry of the specimen under consideration. It is
about the butterfly specimen designed by Bai and Wierzbicki [1] and Mohr and Henn [8]. Its geome-
try is such that fracture triggers within the flat large central area of the gage section. Consequently,
the start failure zone is then remote from the lateral free edges. The butterfly specimen exhibits an
abrupt change in thickness between the gage section and its shoulders. The distinctive features of
the optimized geometry proposed by Dunand and Mohr [6] is a gage section of reduced thickness
bounded by shoulders of clothoid shape. As a result, wide range of stress and strain states within
the middle gage section can be displayed by simultaneously loading the top and bottom of the
specimen boundaries, horizontally and/or vertically. Hereafter, calculations are performed on steel
alloys in order to determine the stress and strain fields within the specimen gage section.
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Figure 1 – Schematic representation of the geometry and loading of a butterfly specimen, (adapted
from Refs. [6, 5])

• Material parameters and geometrical constants of the butterfly specimen [5] used in this si-

mulation : σ̄/σo(ǭp) =
(

1 + E ǭp/σo

)N
, E/σo = 300.0, ν = 0.3, N = 0.10, ρ = 7830 kg/m3,

fo = 0.01, q1 = 1.5, q2 = 1.0, q3 = 2.25, fc = 0.067, f f = 0.20, Ho = 12.6 mm,

Lo = 62.1 mm, ho = 2.0 mm, to = 0.4 mm, 5 × 10−3s ≤ Time period ≤ 6 × 10−3s.
• Loading conditions : the bottom face of the specimen x = −Ho/2 is maintained fixed, whe-
reas the top face x = Ho/2 is subject to a controlled displacement expressed as u = uxex + uyey

with ux = α uy, (0 < α < 1) for shear-dominated deformation loading.

Results based on the present constitutive model and the GTN one are compared, for the above stated
loading conditions, in order to evaluate the predictive capabilities of the former. The loading paths
to fracture of specimens are determined in terms of displacements. For each calculation, (i) tan-
gential force RFx versus horizontal displacement ux curves, and (ii) axial force RFy versus vertical
displacement uy curves. are recorded. Numerous and various loading conditions, ranging from pure
shear to transverse plane strain tension, are considered.

4 Discussion and concluding remarks

Fig. 2(a) depicts the force-displacement curves predicted by both models for six loadings ranging
from shear-dominated deformation (α = 0.1) to tension-dominated deformation (α = 0.9) ; inclu-
ding pure shear loading (α = 0.). For the sake of space, Fig. 2(b) only shows the void volume
fraction contour corresponding to the almost total failure of the butterfly specimen under a shear-
dominated loading corresponding to α = 0.10. It should be noted that in all performed calculations,
plastic deformation localizes within the gage section prior to fracture. It can be seen from Fig. 2(a)
that for high stress triaxiality (tension deformation), the present constitutive model gives quite si-
milar predictions as the GTN model. The Fy − uy curves exhibit a peak preceding a fast drop of
the force, which could occur simultaneously with the onset of localized deformation. For very low
stress triaxiality (shear deformation) the behaviour is qualitatively the same ; indeed, up to the
failure initiation of the specimen, the predictions incorporating the present model are also in a
close agreement with those provided by the GTN model. For shear-dominated deformation, namely
0 ≤ α ≤ 0.3, the obtained force-displacement curves display a “plateau” which extent depends

3



Aussois 2019 - Rupture des Matériaux et des Structures - 21-25 janvier 2019

Present model

GTN model

α = 0.0

α = 0.10

α = 0.30

α = 0.60

α = 0.80

α = 0.90

RFx(kN)

Displacements ux(mm)

Failed shear bands developed within the central

area of the gage section. The shear-dominated

loading corresponds to α = 0.10.

Figure 2 – (a) Comparison of force-displacement curves obtained for both present and GTN consti-
tutive models : the butterfly specimen is subject to various loadings for which the load parameter α
ranges from 0.1 (shear-dominated deformation) to 0.9 (tension-dominated deformation). (b) Failure
modes under shear-dominated deformation with α = 0.1.

on the loading parameter α. Higher the value of this parameter, wider the extent of the “plateau”.
Significant difference starts at and beyond failure points of specimen.

The main objective of this investigation has been to address an extended version of the GTN model
based on a pre-existing yield function for porous plastic materials proposed in [7] and its implemen-
tation within a finite element code. To this end, a fully implicit stress integration scheme has been
chosen. Similar values for the material parameters (elasticity, hardening, Tvergaard parameters, and
coalescence parameters) have been used for both the present model and the GTN model in order
to compare their ability to predict fracture of an optimized butterfly specimen [5, 6]. The obtained
computational results may be briefly summarized as follows :

• For all performed calculations, using the proposed constitutive model and the GTN model for
comparison purpose, plastic deformation localizes within the gage section prior to initiation
of fracture faithfully in his zone.

• At high stress triaxialities (tension-dominated deformation), the proposed constitutive model
gives similar predictions as the GTN model. Indeed, up to the failure initiation of the specimen,
the predictions incorporating the present model are in a close agreement with those provided
by the GTN model. This observation insists the potential of the former constitutive model to
fulfill to the requirement of transferability between different loading conditions.

• For shear-dominated loading, at and beyond failure points of specimen, noticeable disagree-
ment has been observed between predictions of both models.
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