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Abstract

One of the most challenging issues in computational fracture mechanics is the propagation of a crack through
a finite element mesh for arbitrary crack paths. In this work, this is done based on an advanced remeshing
technique. The crack direction is computed using the maximal circumferential stress criterion or the maximal
strain energy release rate criterion. The propagation of the crack is achieved through the combination of an
advanced remeshing technique that enables us to remesh over the computed direction, with dynamic insertion of
cohesive elements in the remeshed zone and in a mesh-independent way, allowing in addition, fracture energy
control. Finally, an application consisting in a well-known mixed-mode benchmark case is presented to show the
robustness of this technique in terms of crack path.

1 Introduction

In the design of structures or machine components, it is crucial to identify the most likely mode of failure, as
well as to be able to prevent catastrophic failures thanks to predictive damage and fracture criteria. Here lies
the importance of fracture mechanics. A suited and proven approach for its study is the finite element method,
even though, propagation of a crack through a finite element mesh for arbitrary crack paths is a challenging and
demanding task [1]. To overcome this issue, crack propagation here is handled through the combination of an
advanced remeshing technique [2] with dynamic insertion of cohesive elements [3] without dependence to the
mesh. The last one allows the control of the energy released during the fracture process.
Fracture is not restricted just to engineering structures as we know it today, it also takes place in "natural objects"
like rocks, the nuclei of comets and asteroids. It has been shown that temperature cycles on airless bodies of
our Solar System can cause damaging of surface material eventually causing their failure and breakdown [4].
This damaging process, known as thermal cracking, consists in the nucleation and growth of micro-fractures
inside the material due to the mechanical stresses induced by the diurnal/nocturnal temperature cycles. Thermal
cracking of surface rocks, in addition to the impact of micrometeorites, can eventually lead to rocks’ breakup
and produce fresh "regolith". Regolith is the layer of unconsolidated material that covers planetary surfaces
[5, 6]. Furthermore, it is proposed by several studies that also macroscopic fractures, mass-wasting, and material
breakdown on asteroids and cometary nuclei could be explained as a consequence of thermal effects [7, 8]. For
all the reasons above, thermal cracking is now considered a space (and Earth) weathering mechanism. Figure
1 shows some in situ images of fractures on the nucleus of 67P/Churyumov-Gerasimenko, those images were
acquired by the CIVA cameras on-board PHILAE [9].
Even though the long-term goal of this project is to simulate crack propagation on asteroids/comets, for now
this work will be focused on the fracture propagation mechanisms, which are still poorly understood in the case
of space objects. The rest of the paper is organized as follows. In Section 2, the numerical method used here
for crack propagation process is described; crack propagation criteria as well as important aspects of cohesive
zone models are covered. Here it is also presented the novelty of this work, i.e., dynamic insertion of cohesive
elements in a mesh independent way. Then a benchmark example is illustrated in Section 3 to show the accuracy
of the proposed method calculating the crack propagation direction under mixed-mode loading. Finally some
concluding remarks are presented in Section 4.
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Figure 1: Fractured block observed in comet 67P/Churyumov-Gerasimenko nucleus. The left image was
stretched to emphasize the fractures [9].

2 Crack Propagation

Once a crack has initiated, it is necessary to check if the crack is going to propagate or not, and in which direction.
There are different criteria to find the direction of propagation of a crack, some criteria are based on the local
fields at the crack tip, following a local approach, e.g. the maximum circumferential stress criterion [10]. Other
criteria are based on the distribution of the energy throughout the cracked part like the maximal strain energy
release rate criterion [11]. This work will cover the aforementioned criteria: The maximal circumferential stress
criterion and the maximal strain energy release rate criterion.

2.1 Maximal circumferential stress criterion (MCSC)

This criterion proposed by Erdogan [10] states that a crack in an elastic material is going to propagate in the
direction for which the circumferential stress (σθθ) is maximun. This criterion is local because the direction of
propagation is calculated using the stress field along a small circle of radius r centered at the crack tip (Figure
2). Through the solution of the following system it is possible to compute the kinking angle of the propagating
crack:

KI sin(θ) +KII (3 cos(θ)− 1) = 0 with


KI sin(

θ
2) < 0

θ ∈ [−π, π]
KI > 0

(1)

where KI and KII correspond respectively to the stress intensity factors for mode I and II, and θ is the kinking
angle. According to this criterion there is a limit angle corresponding to pure shear: θ = ±70.54◦ [10].
The stress intensity factors (KI and KII ) may be calculated through the finite element method, if not, the angle
has to be computed based on the circumferential stress σθθ at each integration point of each one of the elements
attached to the crack tip (Figure 3). Then the crack propagation is performed towards the integration point that
maximises σθθ. In Figure 2 it is shown the way a stress tensor of an element located at a distance r from the
crack tip and defined in a cartesian coordinate system (x− y) should be rotated an angle θ to find the stress in
the θ direction (σθθ).
In this work we use a mixed finite element formulation with first-order elements using linear interpolation
functions for both velocity and pressure (P1 + /P1). These P1 elements are not very good at capturing the
singularity of the stress field at the crack tip (a huge mesh refinement would be necessary). The accuracy of the
stress field would requiere the use of quadratic elements or of special elements such as the Barsoum (or quarter
point) element [12] which accounts for the stress singularity. Without those elements, the use of an energetic
approach may be more appropriate.
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Figure 2: Criterion of Maximun σθθ Figure 3: Elements attached to the crack tip

2.1.1 Maximal strain energy release rate criterion (MSERRC)

According to this criterion the direction of propagation of a crack will be the one which maximises the strain
energy release rate, i.e., the energy required to increase the crack length by one unity. It is evaluated using all
virtual and kinematically admissible displacement field at the crack tip neighborhood. The direction of crack
propagation can be determined by: 

(
dG
dθ

)
θ=θ0

= 0

(
d2G
dθ2

)
θ=θ0

≤ 0

(2)

Where θ0 corresponds to the direction of propagation. Here for the computation of the strain energy release
rate (G), the numerical technique known as Gθ method [13] will be used. This method is based on a virtual
displacement field V . According to Bouchard et al. [14] the Gθ method is very accurate and completely mesh
independent. Additionally, its implementation is quite simple and multiple extensions are available. Those are
the principal reasons that encourages us in the present work to use this method. In the implementation of the
Gθ method adopted here, we first defined two contours C1 and C2 around the crack tip, those contours divide
this region into three domains (Figure 4-a). Then it is defined a virtual displacement field V (v1, v2) as the one
shown in equation (3): 

v1 =
(
1− IM

IJ

)
cos(θ)

v2 =
(
1− IM

IJ

)
sin(θ)

(3)

Finally using equation (4) well described in [14], the energy release rate is calculated for the ring of elements for
a given angle θ belonging to [−70◦, 70◦] [10]. The Gθ method provides an efficient way of computing G for a
virtual extension in the direction θ.

G =

∫
ring

(
Tr(σ∇U∇V )− 1

2
Tr(σ∇U)∇.V

)
dC (4)

Where σ and ∇U are respectively, the stress tensor and the gradient of the displacement, both coming from the
finite element simulation, and∇V is the gradient of the virtual displacement field. In Figure 4-a, it is considered
a virtual ring and it is accounted for all the integration points belonging to this virtual ring. At the end a list of G
values for each θ will be had, so it should be found the maximum (Figure 4-b), and the direction of propagation
will be the value of θ that corresponds with the maximum value of G, i.e., the maximum of the curve G(θ) in
Figure 4-b.
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Figure 4: a) Ring of elements around the crack tip with the contours and domains used to computed G through
the Gθ method. b) G(θ) curve.

2.2 Mesh Independent Cohesive Zone Models

A pioneer perspective stating that fracture is a phenomenon taking place accross an extended crack tip (cohesive
zone), was proposed back in the 60’s [15, 16]. The proposed concept was named as cohesive zone models
(CZM), a simple approach asserting that at the crack tip, there is a finite size region where there is a transition
from a fully broken material to a sound material [17]. In Figure 5 it is shown a schematic representation of
the cohesive region, also known as process zone, where fracturing process is taking place in a brittle material.
Cohesive zone corresponds to prospective fracture surfaces ahead of a crack which are permitted to separate
under loading. Atomic or molecular forces are in charge of preventing the process of separation and creation of
crack surfaces [18]. The force that exerts resistance to the opening of the new surfaces is known as cohesive
force, and it is modeled through a phenomenological traction-separation law (cohesive law). It does not exist
just one cohesive law used to model the fracture process, many of them can be used. In Figure 6 it is depicted
the irreversible exponential cohesive law used in this work.

Figure 5: Schematic representation of the cohesive
zone.

Figure 6: Cohesive law in terms of an effective
opening displacement δ and traction t (loading-
unloading envelop) [3].

The irreversibility characteristic is manifested once upon unloading. The critical energy release rate Gc, i.e. the
fracture energy required to create the new free surfaces and break the material, and the cohesive law can be
related in the following way:

Gc =

∫ ∞
0

tdδ (5)
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Where t is a scalar effective tractio and δ is an effective opening displacement. Equation 5 represents the control
of the fracture energy that cohesive zone models allow us to have during the fracture process. The control
of the fracture energy given by this methodology is one of the reasons that highly encourages the use of the
cohesive zone models (cohesive elements) in our work. Commonly, cohesive zone models have been used to
solve problems involving interfaces, surfaces undergoing decohesion or problems where the crack path is known
a priori [19, 20]. Once the direction of propagation (blue dashed line in Figure 7-a) is computed using one of the
already described criteria, Figure 7-b shows the procedure that has been widely used in the literature to insert
cohesive elements. These are inserted through the closer edges and nodes to the computed direction. Figure 7-c
shows the methodology used here, where before inserting the cohesive elements, a remeshing procedure over
the predicted direction is performed [2]. In this way, it is assured that the crack path is not going to be a good
approximation of the computed one, instead it is going to be exact.

Figure 7: a) Prescribed crack path (dashed blue line). b) Insertion process of cohesive elements previously used
in literature. c) Insertion process of cohesive elements used in this work.

The insertion of cohesive elements in the way showed in Figure 7-b exhibits a mesh dependency behaviour, so
if the mesh changes, the crack pattern slightly changes too [21]. Conversely the process showed in Figure 7-c
is mesh-independent. Inserting cohesive elements on the fly, i.e., while the crack tip is propagating through
the domain, avoids a well known strong drawback in the implementation of cohesive zone models into a FE
framework: artificial reduction of the stiffness of the material (modification of the global stiffness of the material).
Other implications regarding how cohesive elements can be used to model fracture are well discussed in [21].
When remeshing has been performed, the insertion process of cohesive elements can take place. A graphical
illustration of the insertion process done in this work is shown in Figure 8. Pragmatically, two neighbor bulk
elements are separated by inserting a cohesive element at their shared face. This insertion is carried out by just
duplicating the nodes forming the separating face and inserting a new cohesive element linking the original
nodes to the new duplicated ones (Figure 8-c). In part a it can be seen the red dashed line showing the faces that
will be split. b shows the blue dots corresponding to the nodes that have been doubled (indeed there are two
nodes at the same location). The red line corresponds to a initially flat cohesive element. And finally in c it can
be seen that after loading, the new inserted cohesive elements open.

Figure 8: Schematic representation of the insertion of cohesive elements.

3 Results

The maximum circumferential stress criterion and the maximum strain energy release rate criterion (using the
Gθ method) have been implemented in our inhouse library and tests have been performed. Figure 9 shows the
benchmark case tested in this work.
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Figure 9: Single edge crack with off-centre hole (units in mm)

For the proposed benchmark case it will be shown the results regarding first, the insertion of cohesive elements
after remeshing operations and crack propagation, second the crack path for the proposed geometry under the
given loading configurations (mixed-mode), and finally it will be shown a comparison of the computed crack
path using the maximum circumferential stress criterion and the maximum strain energy release rate criterion.
For the sake of simplicity, in the example developed in this paper, the crack growth distance is set to a fixed
value equal to 3 times the element size of the mesh.

3.1 Cohesive elements insertion

Figure 10-a shows the crack tip position at time step n, it is also shown a red line depicting the computed crack
propagation direction. Figure 10-b shows the crack tip position after propagation at time step n + 1, it also
shows a dashed magenta line illustrating the performed remeshing operation and the previous crack tip position.
Finally Figure 10-c shows a zoom detail of the inserted cohesive elements (red) along the crack path.

Figure 10: a) Crack tip position time step n. b) Crack tip position time step n+1. c) Inserted cohesive elements

3.2 Crack path

Figure 11-a shows the crack propagation for a single edge crack with off-centre hole. According to [22] and
[1], under this configuration the propagation of the crack should be affected by the presence of the off-centre
hole, effect that is observed in the results. The crack at the start is attracted by the hole, and after passing the
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hole, the crack continues propagating horizontally. Figure 11-b shows the performed comparison between the
results obtained from the MCSC and the MSERRC. The crack path computed using MSERRC is smoother than
the one obtained from MCSC. This can be due to the fact that MCSC is sensitive to the local stress field at the
immediate crack tip. P1 + /P1 elements are not accurate enough to capture the stress singularity correctly
which can lead to such oscillations. With the MSERRC, the strain energy release rate computation is carried out
in a ring of elements further from the crack tip, in an area with lower stress gradients, which makes this method
more accurate.

Figure 11: A) Crack path of a single edge crack with off-centre hole. B) Comparison between MCSC and the
MSERRC.

4 Conclusions

In the previous section it was presented the preliminary results obtained for crack propagation under mixed-mode
loading in brittle materials. This was done through the combination of an advanced remeshing technique that
enables remeshing over the exact computed direction, with dynamic insertion of cohesive elements in the
remeshed zone, allowing in addition the control of the energy released due to the fracture process. Combination
of the aforementioned methodologies is the biggest novelty here. An energetic approach allowed to calculate in
an appropriate way the crack propagation direction. The work presented here is immersed in a new approach
that allows the crack propagation using remeshing operations and cohesive elements in a mesh-independent way.
Even though the results obtained here are promising, there are still several studies that have to be carried out: the
effect of the different cohesive parameters on the crack path should be studied, this approach has to be applied to
thermal cracking, the developed scheme should be extended to multiple cracks and of course, it also has to be
extended to 3D.
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